Multivariate analysis - Introduction
Gilles San Martin
24 September 2018 - 00h38

Contents
1 Introduction 2
1.1 Organize your datasets and statistical methods . . . . . . ... ... ... .. ... ... .. 2
1.1.1 Variables and observations . . . . . . . . . ... oL 2
1.1.2 Multivariate vs univariate methods . . . . . . . . . . ... L Lo 3
1.1.3 Supervised vs unsupervised methods . . . . . . . ... ..o 3
1.1.4 Distances - clustering - ordination . . . . . . . .. .. ... Lo 3
1.1.5  Overview of the methods . . . . . . . . . . ... .. .. . 6
1.2 Simple graphical vizualisation of complex datasets . . . . . . . . .. .. ... ... ... ... 8
1.2.1 Descriptive statistics as summary of the data . . . . . . . ... ... ... ... .... 8
1.2.2 Visualise the distribution of the variables . . . . . .. .. .. ... ... ........ 10
1.2.3 Faceting . . . . . . . e 13
1.2.4 SPLOMs : Scatterplot Matrices . . . . . . . . . . . . . . 15
1.2.5 Heatmap of the correlation matrix . . . . . . . . . . .. ... ... ... 19
1.2.6  Parallel Coordinate plots . . . . . . . . . . . . 23
1.2.7 SPLOMSs between 2 matrices . . . . . . . . . . . . o o it i 25

source("/home/gilles/stats/mytoolbox.R")
setwd("/home/gilles/stats/Formation_R_stats/Formation_Stats_4_ Multivariate/")

# load the packages used for this chapter
library(vegan)

library(mlbench)

library(GGally)

library(skimr)

library (Hmisc)

library(corrplot)

library (RColorBrewer)

library (MASS)

# load ggplot, change the default theme and change the locale (language = English)
library(ggplot2)

Sys.setlocale("LC_ALL", 'en_GB.UTF-8')

mytheme <- theme_bw(10) + theme(axis.text.x=element_text(size=8),
legend.key = element_rect(color = NA))

theme_set (mytheme)




1 Introduction

1.1 Organize your datasets and statistical methods
1.1.1 Variables and observations

Thinking about your data analysis in terms of data matrices, variables and observations, will not only
help you to choose the right statistical methods but it will also help you to have a better understanding of
your research and to refine the scientific questions at hand from general questions (like : “what factors are
associated with honey bee mortality ?”) to more specific, actionable questions (like “do we observe more
honney bee winter mortalities when we observe more pesticides in the beehive 77).

Almost all datasets can be organized into one or several data matrices caraterized by their :

1. variables / collumns / descriptors / species
2. observations / lines / objects / sites

NB : these terms are used interchangeably in text books or softwares. For example in the vegan package the
collumns are called “species” and the lines are called “sites” even if vegan can be used for other type of data.

The variables are the characteristics that are measured (weight, abundance of a species, expression of a given
gene, sex, ... ). The observations are the sampling units on which the sevariables are measured. Sometimes
each sampling unit is subdivised into sub-sampling units (eg triplicates in mollecular biology, vegetion plots
within sites,...) and/or is measured several times. Each of these replicates in time or space are a different
observation and can be added as a separate line in the dataset with aditional variables to identify for example
the sampling date, the sub-sampling unit etc. ..

The same variable should never be placed on different columns !! Groups of varaibles about different
topics might be stored into diferent matrices (for example one matrix for species abundance, one matrix for
environmental characteristics).

The variables are generally on the columns and the observations on the lines but in some disciplines the
data matrix is often transposed. For example in genomics and other *omics datasets it is frequent to have
the genes (peptides, metabolites,...) - that correspond to the variables - on the lines and the samples (=
the observations) on the columns. In many cases you will not use the same methods when you work on the
variables or the observations so it is particularly important to make the distinction. We will always consider
here that your variables are in the columns and the observations are on the columns... You need also to
check what is the expectation of the pice of software you use.

The collumns (variables) are said to be homogenous if they are measured with the same units. Site x
species matrices are typically homogenous (all columns are abundances or presence/ absences) while sites x
environmental matrices are typically not homogenous (e.g. mix of temperature, humidity, ... ).

The collumns can contain quantitative, presence/absence (binary), ordinal or qualitative variables or a mix
of these. This will have an influence on the choice of the methods.

In Ecology we typically have one site x species matrix (Y) and sometimes one corresponding sites x
environmental measures matrix (X). You can also typically have additionnal spatial or temporal information
that are often stored in other matrices (or in cubic arrays). You can view such a matrix as a multidimentional
space. For example in a matrix with 3 species, each species represent an axis of your 3 dimentional space
and you can place the sites in this space depending on the abundance of each species in each site.



1.1.2 Multivariate vs univariate methods

See also figure 2.

A first usefull distinction can be made between univariate methods where you look at one main variable
of interest at a time vs multivariate methods where you look at several variables at the same time. This
rather artificial distinction is usefull in practice because most of the time it involves the use of rather different
statistical methods.

I will consider here that the frequent case of a multiple regression y~ x1 + x2 + x3 + ... is NOT a
multivariate method because we study one variable of interest (y, the response) at a time even if we have
multiple explanatory variables x1, x2,... Note however that this definition is not universal. You will often
read about “bivariate models” for simple regression y ~ x and multivariate models for multiple regressions
y ~ x1 + x2 4+ x3. In addition some methods like PLS and LDA that are clearly univariate supervised
methods in the sense we use it here (their aim is to predict a quantitative or a qualitative variable) are in fact
strongly connected to classical multivariate unsupervised methods (eg PCA) The supervised /unsupervised
distinction (belox) is on the other hand quite universal and broadly accepeted (but there are also some
methods considered as semi-supervised,. . . ).

1.1.3 Supervised vs unsupervised methods

Typically an other distinction is done between two main statistical approaches (See figure 1):

1. “unsupervised” methods : you want to understand the structure of one matrix at a time (Y), i.e. the
relationships/similarity /disimilarity between either the collumns or the lines of the matrix. These
techniques are mainly clustering (hierarchical clustering, k-means,...) or ordination methods also
called dimensionality reduction methods (PCA, tbPCA, CA, PCoA, nMDS,...).

2. “supervised” methods : you want to understand the relationships between 2 (sometimes more) data
matrices (Y ~ X). These methods are related to regression analyses (RDA, CCA), correlation (CCorA,
Mantel test,...) or regression trees (MRT'). When Y is a single variable we are in the case of a univariate
supervised method with the well known regression like methods : GLMs, & co.

1.1.4 Distances - clustering - ordination

The starting point of most of the multivariate techniques is implicitely of explicitely the calculation of a
similartity or disimilarity matrix either between the columns or the rows.

In the explicit case you first calculate the dissimilarity matrix and then you use it as input for another
method like hierarchical clustering, Principal Coordinate Analysis (PCoA), non Metric Multidimentional
Scaling (nMDS), ...

The implicit methods are using Euclidean distance (PCA, RDA, k-means) or Chi-squared distance (CA,
CCA) but you don’t have to calculate them directly.

After carefully choosing (implicitely or explicitely) a distance index, you have to decide if you want to

1. have a direct representations of the distance matrix (e.g. with heatmaps) —> rarely done
2. create discrete groups based on these distances (clustering methods)
3. display it as a continuous gradient in reduced space (ordination methods).

It is also frequent to combine clustering methods and ordination methods that are really complementary.

This can be done for both the columns (eg groups of species) and the row (eg groups of sites). One advantage
of the ordination approaches is that they often allow you to represent on the same graph both the similarities
between the rows and the columns of your dataset so that it is easier to interpret the similarities (eg : these



sites are similar because species 1 and Species 8 are more abundant there). The reduction of the number of
variables is also particularly usefull if you want to visualise the changes in an other dimension. For example
you often want to visualise how species comunities have changed accross time. Ordination methods allow you
to represent the whole community at one site by one point on the graph and to show the changes over time.
The disadvantage of ordination methods is that 2 dimensions might not be sufficient to properly represent de
full space. For example you can have two points close together in one bidimentional plane but that are infact
far away from each other in other dimentions. Clustering show you the relationships in all the dimensions at
the same time.

You can also to some extent have the best of both worlds by representing the groups produced by the
clustering within the ordination plots and the links between each observation ... -
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1.1.5 Overview of the methods

Here is a brief overview of the most frequent statistical methods with a tentative classification. See also
figure 2

e Univariate unsupervised methods : descriptive statistics of one variable at a time
— histogram and density distribution
— avreage, standard deviation, quantiles
o Univariate supervised methods : relationship between one variable (the response) and one matrix of
“predictors” or “explanatory variables”

— GLMMs and extentions : Generalized Linar Mixed Models that are a generalization of student t
test, ANOVA, linear regression, Logistic regression, G test (like Chi-squared test),. ..

— Machine learning approaches : related or not to GLMs but heavily based on computer algorithms
and resampling techniques (cross validation,...) : GAMMs, MARS, CART (Classification and
Regression Trees), Random Forest, BRT, XGboost, SVM, K-NN, Neural Networks,. ..

— Methods in the gray zone : univariate supervised methods with connection with unsupervised
multivariate methods : PLS (Penalized least Squares), LDA (Linear Discriminant Analysis),. ..

e Multivariate Unsupervised methods : understand the structure of one matrix at a time
— Distances used to create discrete groups of similar observations (or variables)
* Implicit Euclidean distance : K-means Partitioning (non hierarchical method)
*x Explicit distance matrix :
Hierarchical Clustering (with different possible grouping algorithms : Ward, UPGMA,...)
Partitioning around medoids (non hierachical method)
x Many other algorithms with implicit or explicit distance : DBSCAN, fuzzy c-means, model
based clustering, SOMs,Hiererachical divisive clustering,. . .
— Ordination in reduced space : distances used to represent gradients of differences and/or to simplify
the dataset (reduce the number of dimensions)

* Implicit distance matrix
Fuclidean distance : PCA = Principal Component Analysis
Chi squared distance : CA = Correspondance Analysis
Chi squared, Chord or Hellinger distance : tbPCA = tranformation based Principal
Component Analysis

* Explicit distance matrix :
MDS = Metric Dimensional Scaling MDS (also called PCoA = Principal Coordinate
Analysis)
nMDS = non Metric Multidimentional Scaling

e Multivariate Supervised methods : relationship between 2 or more matrices

— Regression like methods = “canonical” or “constrained” ordinations : one matrix (X) “explains’
or “predict” an other one (Y)

x RDA & tbRDA : Redundancy Analysis and transformation based RDA : canonical extension
of the PCA and tbPCA

* dbRDA = CAP : (distance based) RDA on the axes of a PCoA (MDS) based on any distance
matrix. CAP = Constrained Analysis of Principal Coordinates

* CCA : Canonical Correspondance Analysis = extension of CA

« MRT : Multivariate regression trees (very different approach than ordinations)

— Multivariate statistical tests
* Mantel test : correlation between two distance matrices
x* MANOVA, ANOSIM, ADONIS,... : multivariate comparison between 2 or more groups

)
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1.2 Simple graphical vizualisation of complex datasets

Before attacking your data with more complex statistical method (PCA, clustering) an essential and easy
step is to first summarize your datasets and to perform quick graphical explorations.

R offers very powerful yet easy to use tools for this purpose.

1.2.1 Descriptive statistics as summary of the data

Several functions allows you to compute more or less sofisticated descriptive statistics on your dataset.
After importing a dataset you should systematically compute one of these to check that the data have been
imported as intended and that there is no obvious encoding errors or abnormal values.

My prefered function is by far summary but many people prefer the more compact (but less informative in
my opinion) output of str. Two other functions from 2 packages provide much more detailed descriptions.

library(vegan)
data(mite.env)
summary(mite.env)

#i# SubsDens WatrCont Substrate  Shrub Topo

## Min. :21.17  Min. :134.1  Sphagnl :25 None:19  Blanket:44
## 1st Qu.:30.01 1st Qu.:314.1 Sphagn2 :11 Few :26  Hummock:26
## Median :36.38 Median :398.5 Sphagn3 : 1 Many:25

## Mean :39.28  Mean :410.6  Sphagn4 : 2

## 3rd Qu.:46.81 3rd Qu.:492.8 Litter 2

## Max. :80.59  Max. :827.0  Barepeat : 2

## Interface:27

str(mite.env)

## 'data.frame': 70 obs. of b5 variables:
## $ SubsDens : num 39.2 55 46.1 48.2 23.6 ...
## $ WatrCont : num 350 435 372 360 204 ...

## $ Substrate: Factor w/ 7 levels "Sphagnl","Sphagn2",..: 16567 1111751
## $ Shrub : Ord.factor w/ 3 levels "None"<"Few"<"Many": 2 222222333 ...
## $ Topo : Factor w/ 2 levels "Blanket","Hummock": 2 222222112

Hmisc::describe(mite.env)

## mite.env

##

## b5 Variables 70 Observations

### ---—-—-—-———"—""-—"———---------"-—-—---
## SubsDens

## n missing distinct Info Mean Gmd .05 .10 .25 .50

## 70 0 69 1 39.28 13.22 24.58 26.58 30.01 36.38

#i# .75 .90 .95

## 46.81 56.67 60.75

##

## lowest : 21.17 22.36 22.90 23.55 25.84, highest: 59.93 61.43 62.38 64.75 80.59

B
## WatrCont

#i# n missing distinct Info Mean Gmd .05 .10 .25 .50



## 70 0 70 1 410.6 160.9 184.9 237.6 314.1 398.5

## .75 .90 .95
#i# 492.8 592.4 646.6
#i#

## lowest : 134.13 145.28 145.68 184.04 185.89, highest: 634.75 656.35 691.79 708.16 826.96
# ---———-"-"H"-"-------------- e ———————————————
## Substrate

## n missing distinct

## 70 0 7

##

## Value Sphagnl  Sphagn2  Sphagn3  Sphagn4 Litter Barepeat Interface

## Frequency 25 11 1 2 2 2 27

## Proportion 0.357 0.157 0.014 0.029 0.029 0.029 0.386

# -
## Shrub

#Hit n missing distinct

## 70 0 3

##

## Value None Few Many

## Frequency 19 26 25

## Proportion 0.271 0.371 0.357

# -
## Topo

#i# n missing distinct

## 70 0 2

##

## Value Blanket Hummock

## Frequency 44 26

## Proportion 0.629 0.371

# - Y

skimr: :skim(mite.env)

# more complex dataset with factors (ordered or not) and missing value
# (not run here)

library(mlbench)

data(Soybean)

summary (Soybean)

str(Soybean)

skimr: :skim(Soybean)

Hmisc: :describe(Soybean)

The function str is particularly useful to explore the results of a statistical analysis and extract exactly
the part of the results you need. For example here we perform a Principal Component Analysis on the iris
dataset (first 4 columns). Then we look at the structure of the object and we extract the loadings of the
original variables from a slot called here “rotation”.

pca <- prcomp(iris[,1:4])
str(pca)

## List of 5
## $ sdev : num [1:4] 2.056 0.493 0.28 0.154
## $ rotation: num [1:4, 1:4] 0.3614 -0.0845 0.8567 0.3583 -0.6566 ...



## ..— attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
#i# .. ..%$ : chr [1:4] "PC1" "PC2" "PC3" "PC4"

## $ center : Named num [1:4] 5.84 3.06 3.76 1.2

##  ..- attr(*, "names")= chr [1:4] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
## $ scale : logi FALSE

# % x : num [1:150, 1:4] -2.68 -2.71 -2.89 -2.75 -2.73 ...

## ..— attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..%$ : chr [1:4] "PC1" "PC2" "PC3" "PC4"

## - attr(*, "class")= chr "prcomp"

pca$rotation

#i# PC1 PC2 PC3 pPC4

## Sepal.Length 0.36138659 -0.65658877 0.58202985 0.3154872
## Sepal.Width -0.08452251 -0.73016143 -0.59791083 -0.3197231
## Petal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390
## Petal.Width  0.35828920 0.07548102 -0.54583143 0.7536574

1.2.2 Visualise the distribution of the variables

It is often usefull to have an idea of how the values of the different variables are distributed. Histogram or
density plots are an easy and good toot for this. Note that some functions and graphs presented below (eg
SPLOMs) will compute such graphs automatically for you along with other graphs. The manual creation of
histograms might however be usefull whan you have many variables.

Here is a simple example for the mite dataset (abundance of mites)

data(mite, package = "vegan")
dim(mite)

## [1] 70 35

# reorder the columns of the dataset to have the most abundant species in the
# first columns
mite <- mite[,order(-colSums(mite))]

# dev.new(width = 18/2.5/, height = 18/2.5/)
# Plot an histogram of the 16 most abundant species on the log scale
par (mfrow = c(4,4), mar = ¢(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
for (i in 1:16) {
hist(loglO(mite[,i]l+1), breaks = 15, freq = TRUE, main = colnames(mite[i]))
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Here is a more complex example with the iris data. The aim here is to have a joint vision of the distribution
of the morphological variables of all iris species together but at the same time of each species separated.
Density plots are ideal for this because you can easily superpose them... Even if the mathematics behind
density plots involves complex probabilistic notions (probability density function), their interpretation is
straightforward : the higher the lien, the higher the number of observations in this range of values

# dev.new(width = 18/2.54, height = 6/2.5/)
par (mfrow = c(1,4), mar = ¢(3,2,3,0.5), mgp = c(1.8, 0.6, 0))
d <- iris
for (i in 1:4) {
hist(d[,i], breaks = 20, col = "grey90", border = 'grey60',
freq FALSE, las=1, main = "",
xlab = colnames(d) [i], ylab = "")
lines(density(d[,i], adjust = 0.5), col = "grey40", lwd = 2, 1ty = 3)

"setosa",i], adjust = 1)
"versicolor",i], adjust = 1)
"virginica",i], adjust = 1)

densl <- density(d[d$Species
dens2 <- density(d[d$Species
dens3 <- density(d[d$Species

lines(dens1$x, dens1$y/3, col
lines(dens2$x, dens2$y/3, col
lines(dens3$x, dens2$y/3, col

"dodgerblue", lwd = 2)
"orangered", lwd = 2)
"gold", lwd = 2)

if(i == 2) {
legend("topleft", inset = -0.25, xpd = NA, ncol = 4, bty = "n",
lwd = 2, 1ty= c(1,1,1,3),

col = c("dodgerblue","orangered", "gold", "grey40"),
legend = c("setosa", "versicolor", "virginica", "All species") )
3
}
— setosa - versicolor virginica - == All species
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Figure 4:
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1.2.3 Faceting

Faceting consist in creating sub graphs for subset of the data (categorical variables or quantitative variables).
You can do this manually with loops as we did in the previous section but several R graphical packages
simplify this process a lot (typically : ggplot2 or lattice).

The big advantage of these packages is that it is much more easy to change completely the visualisation of
your dataset

# You have to change the organisation of the dataset from a "wide format"
# to a "long fromat"
d <- iris

d <- reshape2::melt(iris, id = "Species")
head (d)

##  Species variable value

## 1 setosa Sepal.Length 5.1

## 2 setosa Sepal.Length 4.9

## 3 setosa Sepal.Length 4.7

## 4 setosa Sepal.Length 4.6

## 5 setosa Sepal.Length 5.0

## 6 setosa Sepal.Length 5.4

Now you can easily compare the 3 species for each morphological measure :

# dev.new(width = 18/2.5/, height = 6/2.5/)
ggplot(d, aes(y = value, x = Species)) +
geom_boxplot (color = "dodgerblue") +
geom_point(color = "gray40", alpha = 0.25, position = position_jitter(width = 0.1)) +

facet_wrap(~variable, scales = "free", nrow = 1) +
xlab ( nn )
Sepal.Length Sepal.Width Petal.Length Petal.Width
2.5
2.0 1
[} 1.5 4
=
©
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0.5 i
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Figure 5:
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With a very limited change in the code, you can easily change completely the representation. Here you
compare the 4 morphological measures for each species. The interest is limited here but in many situation
these faceting facilities are really helpfull to explore graphically the data.

# dev.new(width = 16/2.54, height = 8/2.54)
ggplot(d, aes(y = value, x = variable)) +
geom_boxplot (color = "dodgerblue") +
geom_point(color = "gray40", alpha = 0.25, position = position_jitter(width = 0.1)) +
facet_wrap(~Species, scales = "free", nrow = 1) +
xlab("") +
theme (axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
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1.2.4 SPLOMs : Scatterplot Matrices

A SPLOM is a graph in which each subgraph is a scatterplot of each pair of the variables of the dataset.
The pasic function to perform this in R is pairs. This function is highly customizable and allows you to
add almost everything you want in each subgraph. Here is my own version (there are plenty other available
in packages or on the web). The diagonal contains information about the distribution of each variable
(histogram + density). The lower pannel provides the correlation coefficient with a font size proportional to
the correlation value to improve redability. The upper pannel contains the scatterplots with a regression line
and a smoother (loess) to visualize the trends.

These graphs are extremely useful and should be done almost systematically !! Their main disadvantage is
that you are limited on the number of variable that you can plot (~20 variables) to keep your graph readable
Heatmaps of the correlation matrix are probably more adapted for more variable but they are less informative
because they show you only a summary statistic (the correlation coefficient) and not a scatter plot of the real
relationship. Here we transform the qualitative variables into dummy variables —> the correlation coefficient
inlcuding species can be interpreted.

# dev.new(width = 16/2.54, height = 11/2.54)
pairs2(iris, dummy = TRUE)
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Figure 7:
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Here the variable are rerdered to group the more correlated variables together (reorder = TRUE), we compute
the Spearmn correlation (instead of the default pearson). We also map the color and shape of the point to
the Species variable and add a legend.

# dev.new(width = 15/2.54, height = 10/2.54)
mycols <- c("forestgreen", "gold", "dodgerblue")
pairs2(iris[,1:4], Rmethod = "spearman", reorder = TRUE,
pt.cex = 0.9, oma=c(3,3,5,3), # outer margins
col = mycols[as.numeric(iris$Species)], pch = c(1:3) [as.numeric(iris$Species)])
legend("top", col = mycols, legend = levels(iris$Species), pch = 1:3,
xpd = NA, ncol = 3, bty = "n", inset = -0.03, pt.cex = 1)
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The package GGally provides several functions to perform complex SPLOMs based on ggplot. The output is
more complex and produces different results depending on the type fo data (qualitative, quantitative,...)

but the function is very slow. ..

# dev.new(width = 16/2.54, height = 12/2.5/)
library(GGally)
ggpairs(iris, aes(color = Species))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
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ggscatmat uses only numeric values and is a little bit faster

# dev.new(width = 16/2.54, height = 10/2.54)
ggscatmat (iris, color = "Species") + theme_bw()
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1.2.5 Heatmap of the correlation matrix

Here we use a huge dataset of meteorological data, land use and soil data of a 1375 5x5 km? grid of Belgium
(UTM grid). Whith the 157 variables of this dataset it is impossible to make a SPLOM. A heatmap of the
correlation matrix is a good way to explore such huge dataset to see the redundancies between the variables.
d <- read.csv2("data/UTM5/UTMbdata.csv")

# summary (d)

# colnames(d)

# dev.new(width = 18/2.54, height = 18/2.54)
corheatmap(d[,-(1:10)], FALSE, cexRow = 0.6, cexCol = 0.7)
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Correlation

=
|

Figure 11:
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You can the examine more closely some subsets of the dataset :

# dev.new(width = 18/2.54, height = 18/2.5/)

d2 <- d[, which(colnames(d) == "bio01") : which(colnames(d) == "wind12")]

# corheatmap(d2, R = FALSE, cexzRow = 0.6, cexCol = 0.7)

corheatmap(d2, R = FALSE, breaks = c(-1, -0.8,-0.6, 0.6, 0.8, 1), cexRow = 0.6, cexCol = 0.7)
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Here we add the value of the correlation coefficient (x100) but this is not really necessary.

# dev.new((width =

corheatmap(d2,T, 0.7)

-1 0
Correlation

# dev.new(width =
corheatmap (sqrt(d2),T, 0.5)

# dev.new(width =

d2 <- d[, which(colnames(d) == "tmaz01")

corheatmap (d2,F, 0.5)

14/2.54, height = 14/2.54)
d2 <- d[, which(colnames(d) == "bioO1")

bio02
bio03

14/2.54, height = 14/2.54)
d2 <- d[, which(colnames(d) == "clc111")

18/2.54, hezgh,t = 14/2.54)

: which(colnames(d) == "biol19")]
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Figure 13:
: which(colnames(d) == "clcb23")]
: which(colnames(d) == "tmini2")]
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Note that the scatterplot matrix is often more informative than a simple coorelation coefficient even with the
heatmap.

Here you can see the complex Inon linear relationship between the winter and summer temperatures in
different Belgian regions

# dev.new(width = 18/2.5/, height = 12/2.5/)

d2 <- d[, which(colnames(d) == "tmax01") : which(colnames(d) == "tmin12")]

d2 <- cbind(d$alt, d2[,c( "tminO1", "tminO02", "tminO3", "tmin04",
"tmax04", "tmax05", "tmax06", "tmax07")])

pairs2(d2, reorder = FALSE, pt.cex = 0.5)
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Figure 14:

corrplot is a popular package for the visalisation of correlation matrices. Have look at the vignette of the
package to have a full view of the many possibilities offered by the package. Keep in mind that simplicity is
often better ... There are also lots of example to add p-values information on the graphs. This is generally
not usefull (unless you have a very small dataset, the size of the correlation is more important. .. )

d2 <- d[, which(colnames(d) == "bio01") : which(colnames(d) == "bio19")]
corrplot: :corrplot(cor(d2), method = "circle", order = "hclust", addrect = 4)
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https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
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Figure 15:

1.2.6 Parallel Coordinate plots

A specific type of plot dedicated to the visualisation of several numeric variables at the same time. Each axis
represent one variable and has been normalized to have comparable scales between variables.

# dev.new(width = 12/2.5/, height = 8/2.5/)

mycols <- c("forestgreen", "gold", "dodgerblue")

par(mar = c(3.5,2.5,3,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)

MASS: :parcoord(iris[,1:4], col = mycols[iris$Species])

legend("top", xpd = NA, inset = -0.1, bty = "n", ncol = 3, cex
fill = mycols, legend = levels(iris$Species))

1.1, col = NULL,

B setosa O versicolor M virginica

| | | |
Sepal.Length Sepal.Width Petal.Length Petal.Widtt

Figure 16:

The problem with this kind of graphs is that they become quicly overcrowded and difficult to read. Here is
an example with bioclimatic variables from different regions of Belgium
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d <- read.csv2("data/UTM5/UTMbdata.csv")
d2 <- d[, c( which(colnames(d) == "naturalRegion"),
which(colnames(d) == "bio01") : which(colnames(d) == "bio19"))]
set.seed(123)
d2 <- d2[sample(1:nrow(d2), size = 500),] # random sample of 500 grids

d2[,1] <- as.numeric(d2[,1])

# Colors
mycols <- RColorBrewer: :brewer.pal(10,"Set3")
mycols_trans <- adjustcolor(mycols, 0.25) # add transprency

# dev.new(width = 18/2.5/, height = 12/2.5/)
par(mfrow = c(1,1), mar = ¢(3.5,5.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
MASS: :parcoord(d2, col = mycols_trans[d2$naturalRegion], var.label = TRUE)
mtext (text = levels(d$naturalRegion), side = 2, line = -1, cex = 0.8,
at = seq(0,1, length.out = length(levels(d$naturalRegion))),
col = mycols)
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Figure 17:
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1.2.7 SPLOMs between 2 matrices

In classical SPLOMs you make a graph of each pair of variable within a given matrix of data. The idea
here is to make a scatterplot between each pairs of variables in 2 different matrices. This is typically usefull
for datasets suited for multivariatye supervised methods (RDA, CCA). In the following example, we use a
site x species of mites dataset and a site x 5 environmental characteristics dataset. For each of the 8 most
abundant mite species, we plot a graph of the species abundance vs each of the environmental variables.

library(GGally)
library(vegan)
data(mite)
data(mite.env)
data(mite.xy)

# 8 most comon species of mites
mite <- mite[,order(-colSums(mite)) [1:8]]

# You need to group the 2 matrices (species and environment)

# and to provide the number of the columns of each group you want to plot.
spec <- 1l:ncol(mite)

env <- (1:ncol(mite.env)) + ncol(mite)

d <- cbind(mite, mite.env)

# dev.new(width = 18/2.5/, height = 18/2.54)
ggduo(d, env, spec,
types = list(continuous = wrap("smooth_loess", size = 0.5))) +
theme_bw() +
theme (axis.text.x = element_text(angle = 45, hjust = 1))
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