
Clustering
Gilles San Martin

01 October 2018 - 13h08

Contents
1 Clustering 2

1.1 Clustering aims and general process . 2
1.2 Different clustering algorithms . 3
1.3 Hierarchical (aglomerative) clustering . 5

1.3.1 Introduction . 5
1.3.2 Details about the algorithm and different grouping methods 9
1.3.3 Choice of the grouping method . 13
1.3.4 Flexible-Beta clustering . 22
1.3.5 Interpretation of the dendrogram and common pitfalls 24
1.3.6 Basic dendrograms manipulation and graphs . 25

1.4 K-means and K-medoids partitioning . 34
1.5 Clusters interpretation . 37

1.5.1 Clusters visualisation . 37
1.5.1.1 Visualize the clusters with heatmaps . 37
1.5.1.2 Visualize the clusters on a SPLOM . 45
1.5.1.3 Visualize the clusters on an ordination plot 46

1.5.2 Clusters description . 48
1.5.2.1 Describe the clusters with simple graphs . 48
1.5.2.2 Describe the clusters with pseudo-supervised approaches (eg : classification

tree) . 52
1.6 Clustering validation . 54

1.6.1 Silhouette width . 55
1.6.2 Choose the “best” number of clusters with the Gap statistic 58
1.6.3 Choose the “best” number of clusters with NbClust 60
1.6.4 Compare different algorithms and different number of clusters with the silhouette width

and Dunn index . 62
1.6.5 Compare different algorithms and different number of clusters with clValid 66

1

1 Clustering

source("/home/gilles/stats/mytoolbox.R")
setwd("/home/gilles/stats/Formation_R_stats/Formation_Stats_4_Multivariate/")

load the packages used for this chapter
library(vegan)
library(gplots)
library(dendextend)
library(visreg)
library(multcomp)
library(rpart)
library(rpart.plot)

load ggplot, change the default theme and change the locale (language = English)
library(ggplot2)

1.1 Clustering aims and general process

The aim of clustering is to create discrete groups (called “clusters”) of observations (or variables) that are as
similar as possible within the cluster but as different as possible from the other clusters.

There are two main (non exclusive) reasons for which you may want to create such groups :

1. Data vizualisation : To reorganize the data in a way that helps you to visualize general patterns in it.
Clustering is then a data exploration tool used mainly for visualisation (eg dendrograms and heatmaps).
The clusters created will probably not be used outside your specific study.

2. Data simplification : To simplify the data in a few easily understanble groups. In that case you want to
create a “typology” or “classification” that might be reused outside your study (ex : phyto-sociological
associations, geomorphological regions, land-use typologies for mapping, . . .). In this case, assessing
the validity" of the clusters is probably more important while for data exploration, any clustering that
provides interpretable results might be usefull.

All processes studied in biology are not always really discrete. For example plant species communities might
be very different between a peat bog and a chalk grassland but there are probably many intermediate plant
communities that fall between the peat bogs and chalk grasslands. However even for rather continuous cases
like this one it might be usefull to simplify reality by creating a typology/classification of “typical” plant
associations.

We will divide the clustering approach in several steps :

1. Clustering construction : Choose a clustering algorithm and
an appropriate distance metric if needed

2. Clustering visualisation and interpretation : What is the meaning of these clusters ? What
characterise them ?

3. Clustering validation : assess the quality of the clusters to answer the following questions :
1. How “good” are my clusters ?
2. How many clusters should I use ?
3. Which clustering method works “best” ?
4. Are the clusters “real” or am I creating clusters from random noise ?

2

This is not a linear and straightforward process. . . Clustering interpretation is by far the most important
step and might help to chose for example the clustering algorithm (ie one that produce interpretable results
is better. . .) and the number of clusters. External validation is also often used to help the interpretation of
the clusters. Clustering validation and interpretation are generally particularly interleaved processes. . .

1.2 Different clustering algorithms

There are many different clustering algorithms but the most popular is by far a group of hierarchical
agglomerative clustering methods (eg hclust function in base R or cluster::agnes). When one claims to
use “clustering” without more precision on the method you can safely assume that this approach was used.
Another very popular approach particularly for hudge datasets is k-means clustering (and the related PAM
algorithm).

These clustering algorithms are often classified according to certain technical characteristics :

• Agglomerative vs divisive :
Agglomerative algorithms like hclust start by grouping similar points then progressively aglomerate
them into larger clusters.
Divisive algorithms (like kmeans or cluster::diana) start with the whole dataset and split it in several
groups.

• Hierarchical or not :
In hierarchical clustering (like hclust) clusters are subdivided into subclusters and form a hierarchy of
clusters that is generally represented graphically with a dendrogram. The user can decide afterwards
how many clusters will be interpreted or used. When you go from a two clusters solution to a 3
clusters solution one of the two clusters is divided into 2 clusters and the other is left unchanged. In
non-hierarchical methods (like kmeans) the user decides in advance how many clusters should be found
and the clusters do not show any hierarchical relationship between each other. When you go from a 2
clusters solution to a 3 clusters solution an entirely new solution is computed and the original 2 clusters
points might end up in different clusters.

• Fuzzy vs Crisp/Hard : In “crisp” or “hard” clustering (like hclust and kmeans) one point can only
be the member of one cluster.
In fuzzy clustering methods (like cluster::fanny) we estimate for each point a probability to be a
member of each cluster. From this result one can obtain a hard clustering by placing each point in the
cluster for which it has the highest probability or decide to consider some points as “outliers” or “noise”
when their cluster membership is unclear/

• explicit vs implicit distance : for most algorithms, you must provide a distance matrix of your
choice. But some algorithms

The combination of these characteristics can help to have a vague idea of how different algorithms work and
what are their similarities/dissimilarities

• Hierarchical Clustering (hclust, cluster::agnes): hierarchical, aglomerative, crisp on any distance
matrix

• DIANA (cluster::diana) : hierarchical, divisive, crisp on any distance matrix
• K-means (kmeans, vegan::cascadeKM) : non hierarchical, divisive, crisp - based on Euclidean distance

(or a few compatible distances via transformation : Hellinger, Chord, . . .)
• PAM (“Partitioning Around Medoids” or “k-medoids”) and CLARA (“Clustering Large Applications”)

(cluster::pam, cluster::clara) : non hierarchical, divisive, crisp - based on any distance matrix.
PAM is quite slow. For larger datasets CLARA applies PAM on random subsample of the total dataset
and provide a global solution in a faster algorithm.

• FANNY (cluster::fanny) fuzzy c-means clustering : non hierarchical, divisive, fuzzy - based on any
distance matrix

3

Many other algorithms exists and might not necessarily fit this typology or they might have a very specific
application. . .

• DBSCAN (" Density Based Clustering" dbscan::dbscan) : designed specifically to find dense clusters
of points of any shape while most other methods will tend to find circular shapes. Two other very
attractive features of this algorithm is that the number of clusters is found automatically and some
points will also be detected as “outliers” and will not be placed in any cluster. However it needs dense
clusters and hence might not work well on highly dimensional datasets.

• Model based clustering (mclust::mclust) : a sort of non hierarchical fuzzy method in which each
cluster is considered to be a multivariate distribution (Normal, Poisson, Negative-Binomial,. . .). The
parameters of these distributions are estimated by Maximum Likelihhod with the EM algorithm
(“Expectation-Maximisation”) or other similar algorithms (eg Deterministic or Simulated Annealing -
DA - SA). The “best” model and number of clusters is automaticaly chosen based on the maximisation
of the BIC criterion. For each point we obtain a probability to be in each cluster (fuzzy clustering).
Quite popular in genomics.

• SOM (Self Organizing Maps kohonen::som) : based on Neural Networks and euclidean + a few other
distances. Can handle mixtures of quantitative and qualitative data and also missing data. The clusters
are spatially organized in one or 2 dimensions. As a consequence the method is often used at the same
time as a clustering method and an ordination/dimentionality reduction method.

• SOTA (Self-Organizing Tree Algorithm - clValid::sota) : hierarchical, divisive, crisp - only for
variable clustering (R mode) with euclidean distance or Pearson correlation (mainly developped for
genomic datasets)

• k-modes (klaR::kmodes): similar to k-means (non hierarchical, divisive, crisp) but specifically devel-
opped to handle qualitative data

4

1.3 Hierarchical (aglomerative) clustering

1.3.1 Introduction

In hiererachical (agglomerative) clustering the observations are progressively grouped in larger clusters
and the hierarchical structure is typically represented with a dendrogram (tree like representation of the
hierarchy).

The typical basic steps are

1. compute an appropriate distance (dist, vegan::vegdist) sometimes after an appropriate transforma-
tion of the data (scaling, log, hellinger,. . .)

2. apply the clustering algorithm (hclust) and choose a grouping method (method = average, ward.D,. . .)
3. visualise the result as a dendrogram (plot)
4. cut the dendrogram at a given height to attribute each observation to a given cluster (cutree)

These are only the basic steps. The interpretation of the clusters (and to some extent their “validation”) is
of tremedous importance. Producing a dendrogram without being able to interporet the clusters formed is
often useless.

Example of the basic steps =
Create a fake dataset with 20 observations * 5 variables
set.seed(123)
d <- rbind(matrix(runif(50, 0, 1), 10, 5),

matrix(runif(25, 1, 2), 5, 5))
colnames(d) <- paste0("x", 1:5)
scale (standardize) the data (for each column subtract the average and divide by the
stadard deviation) and compute the Euclidean distance
Eucl_dist <- dist(scale(d))
compute the agglomerative clustering with a "ward.D2" method for grouping
hcl <- hclust(Eucl_dist, method = "ward.D2")
Visualize the dendrogram
plot(hcl, hang = -1)

5

11 15 14 12 13 5 8 2 4 9 3 7 10 1 6

0
2

4
6

8
10

Cluster Dendrogram

hclust (*, "ward.D2")
Eucl_dist

H
ei

gh
t

Figure 1:

Cut the clustering solution to obtain 2 groups
Here the first ten observations are in cluster nr1 and the 5 next ones are in cluster
2 (this is how the dataset has been created)
cutree(hcl, k = 2)

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

You can also apply clustering on the variables providing that you use an appropriate distance method.
Reminder : the distance functions generally work on the lines so if you want to apply them on the colomns
you will need first to transpose your dataset (function t()). Note that here the 5 variables are completely
independent so there is no real cluster in the variables. . .
Compute the euclidean distance on the columns :
colDist <- dist(t(scale(d)))
hierarchical clustering with an "average" (UPGMA) grouping method
hcl <- hclust(colDist, method = "average")
Visualize the results with a dendrogram
plot(hcl, hang = -0.01)

6

x1 x5 x3 x2 x4

2.
0

2.
8

Cluster Dendrogram

hclust (*, "average")
colDist

H
ei

gh
t

Figure 2:

Advantages

• Provide a hierarchical structure that is generally helpfull to organise different levels of grouping
structures/classification

• Easy to visualise with dendrograms and heatmaps
• You don’t need to specify in advance how many clusters you will use. You can decide visually on the

dendrogram (+heatmaps, +external validation) how many clusters you want to use
• In contrast with ordinations, all original dimensions are represented at once

Disadvantages

• visualisation with dendrograms might be difficult for very large datasets
• in contrast with non aglomerative clustering, once an observation is attributed to one cluster, its

cluster membership will no more be reevaluated (and hence there is no possibility to “correct” wrong
assignments)

• the choice of the grouping method is rather arbitrary and provides very different results particularly at
the top levels of the dendrogram (because of the agglomerative process) which are generally the ones
that are the main focus

• Not easy to reattribute a new observation to the clusters created without rebuilding the whole
dendrogram

Recommendations

• When you use Hierachical clustering, always specify :
1. any data transformation that you have applied
2. which distance index you have chosen (and choose it wisely. . .)
3. which agglomeration method you use
4. If you are clustering the observations or the variables (although this might be self-evident from

the rest)
• Give a verbose description of the groups created with the help of any interpretation method : graphs of

the original variables per group, heatmaps, external supplementary variable,. . .

7

• don’t believe blindly the cluster validation indices unless you cannot do otherwise

8

1.3.2 Details about the algorithm and different grouping methods

The algorithm works as follow :

• compute the distance between all observations
• group first the observations with the lowest distance
• recompute the distance between all individual observations and grouped observations
• aggregate the ones with the lowest distance etc. . .

The first step is quite straighforward (once you have chosen the right distance index). The difficulty comes
when you want to measure the distance between two groups of observations or between one observation and
a group of observations. There are many different ways to do so that can be chosen via the method argument
of hclust (see below).

NB : see Legendre and Legendre (2012) if you want to understand exactly how the distances between clusters
are recomputed. However this is not of major importance for the practical use of these algorithms.

• single : single linkage : The distance between 2 clusters is the minimum distance between their members.
Single Linkage will put more weight on between-cluster separation at the expense of within-cluster
homogeneity. It tends to produce “chains” (‘friends of friends’ clustering strategy) : once a cluster is
formed, the algorithm tends to add the new observations to this cluster, one by one instead of starting
a new cluster.

• complete : = complete linkage (default). The distance between 2 clusters is the maximum distance
between their members. When you have two large clusters the probability that at least two of their
members are far away from each other is higher and it is difficult to join existing clusters. This methods
tends to produce more spherical, equaly sized clusters which is often useful. However, in single and
complete linkage the distance between two cluster is based on a single pair of observations. These
methods are therfore quite sensitive to outliers. Note also that transformations keeping the order of
the data (eg sqrt, log) will not decrease the influence of these outliers and they will provide exactly the
same tree structure (this is not the case with the nexet methods).

• average or “UPGMA” (“Unweighted pair group method with arithmetic mean”). The distance between
2 clusters is the average of the distances between their members. So the distance between two clusters is
based on all pairs of observations and this method is less sensitive to outliers. The dendrograms based
on this method also provide generally the best approximation of the distance between two observations.
It provides generally intermediate results between complete and single linkage, with less chaining than
single linkage and more irregular clusters than complete linkage. This is a very widely used method
(typically used for example in phyllogeny).

• mcquitty = “WPGMA” (Weighted Pair Group Method with Arithmetic Mean). This method is close
to UPGMA but each of the cluster joined will have the same contribution to the computation of the
average whatever the number of observations in each cluster.

• centroid = ‘UPGMC’ and median = ‘WPGMC’ are using the centroïd of the clusters to compute the
distances (with a weighted or unweighted algorithm taking into account the difference of cluster size or
not). These methods can produce “inversions” on the dendrograms that are not easy to interpret (the
node of a child cluster might have a higher value than the node of its parent cluster).

• ward.D andWard.D2 : the ward method will choose to group clusters that minimise the within cluster
distance. With Euclidean distance this creates clusters that minimise the within group variance. This
method is very popular because it tends to create well separated uniform groups and make dendrograms
in which the major groups are easy to visualize. However the smaller distance are generaly rather
compressed which make the visualisation and interpretation of clusters of more similar observations
more difficult to read. The 2 methods are two versions of the same algorithm : the dissimilarities are
squared before cluster updating for ward.D2 while they are not for ward.D

The following very simple example (one dimentional datset) shows how the clustring works and how the

9

dendrograms should be read. (NB : in real life applying clustering or ordination on one or two dimentional
datasets is really unnecessary and must - most of the time - be avoided).
d <- cbind(x = c(1, 2, 4, 8, 10), y = 0)
row.names(d) <- c(1, 2, 4, 8, 10)

dev.new(width = 10/2.54, height = 4/2.54)
par(mfrow = c(1,1), mar = c(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
plot(d, type = "n")
text(d, labels = d[,"x"])

2 4 6 8 10
-1.0
-0.5
0.0
0.5
1.0

x

y 1 2 4 8 10

Figure 3:

The Euclidean distance is very easy to compute even without computer here :
D <- dist(d)
D

1 2 4 8
2 1
4 3 2
8 7 6 4
10 9 8 6 2

You can see on these dendrograms that :

• observations 1 and 2 are always at a distance of 1 (position of the node)
• observations 8 and 10 are always at a distance of 2
• the different grouping methods differ only on the position of the node linking observation 4 to the

cluster of observation 1 and 2 : 2 for single linkage, 3 for complete linkage, 2.5 for average, etc. . .

Note also that here all the graphs are very similar but on real life datasets these different grouping methods
will generally provide very different solutions. . .

10

dev.new(width = 14/2.54, height = 20/2.54)
xhang = -1

par(mfrow = c(4,2), mar = c(0.1, 2.5, 2, 1), mgp = c(1.5, 0.5, 0))
Single : shortest distance among groups
plot(hclust(D,method = "single"), hang = xhang , ylab ="", main = "Single linkage")
abline(h = seq(0,10,1), col = "gray70")

Complete : longest distance among groups
plot(hclust(D,method = "complete"), hang = xhang , ylab ="", main = "Complete linkage")
abline(h = seq(0,10,1), col = "gray70")

Avergage : average distance among groups = UPGMA
plot(hclust(D,method = "average"), hang = xhang , ylab ="", main = "Average = UPGMA")
abline(h = seq(0,10,1), col = "gray70")

WPGMA
plot(hclust(D,method = "mcquitty"), hang = xhang , ylab ="", main = "Mc Quitty = WPGMA")
abline(h = seq(0,10,1), col = "gray70")

UPGMC
plot(hclust(D,method = "centroid"), hang = xhang , ylab ="", main = "Centroid = UPGMC")
abline(h = seq(0,10,1), col = "gray70")

Median = WPGMC
plot(hclust(D,method = "median"), hang = xhang , ylab ="", main = "Median = WPGMC")
abline(h = seq(0,10,1), col = "gray70")

Ward 1
plot(hclust(D,method = "ward.D"), hang = xhang , ylab ="", main = "Ward 1")
abline(h = seq(0,10,1), col = "gray70")

Ward 2
plot(hclust(D,method = "ward.D2"), hang = xhang , ylab ="", main = "Ward 2")
abline(h = seq(0,10,1), col = "gray70")

11

4 1 2 8 10

1.
0

2.
0

3.
0

4.
0

Single linkage

8 10 4 1 2

0
2

4
6

8

Complete linkage

8 10 4 1 2

1
2

3
4

5
6

Average = UPGMA

8 10 4 1 2

1
2

3
4

5
6

Mc Quitty = WPGMA

8 10 4 1 2

1
2

3
4

5

Centroid = UPGMC
8 10 4 1 2

1
2

3
4

5

Median = WPGMC

8 10 4 1 2

0
2

4
6

8
10

Ward 1

8 10 4 1 2

0
2

4
6

8
10

Ward 2

Figure 4:

12

1.3.3 Choice of the grouping method

These different methods will generally produce very different results and the choice of the grouping method
is mostly arbitrary. . . The “best” grouping method will depend on your dataset and on your definition of a
“good” cluster. So the most important criterion to choose the “best” method is to look at the clusters and
dendrograms and choose the one that provides the best interpretable/useful result. The UPGMA (average),
ward and complete linkage methods are popular choices that will produce well separated major groups. In
comunity ecology (clustering of species data) “flexible-beta clustering” (with a beta of -0.25) has also become
recently popular (see below). It provides an intermediate solution between complete linkage and UPGMA
(average). In the validation section we will see descriptive statistics that can be computed to evaluate the
“quality” of the clustering solution. However interpretability should always be your main driver to choose the
method.

We will first examine how these different methods behave with completely random data (where there is
actually no clusters. . .).

• All the methods (exepted maybe the single linkage) will produce clusters even in random noise where
there are absolutely no clusters. . .

• all algorithms produce rather different solutions . . .
• the single linkage tend to produce one (or few) large cluster and a few very small clusters of points

that are weak outliers here
• The 2 ward algorithms and the two average based algorithms (average and mcquitty) and complete

linkage tend to produce clusters of the same size (“circular clusters”)
• The two centroïd based algorithms (centroid and median) might produce clusters of more varied sizes

and the dendrogram show “inversions” that are difficult to interpret
dev.new(width = 12/2.54, height = 22/2.54)

set.seed(12)
tmp <- matrix(runif(1000), ncol = 2)
colnames(tmp) <- c("x", "y")

k = 5
methods <- c("single", "complete", "average", "mcquitty", "centroid", "median",

"ward.D", "ward.D2")

par(mfrow = c(4,2), mar = c(2,2,2,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
for(method in methods){

hcl <- hclust(dist(tmp[, c("x", "y")]), method = method)
groups <- cutree(hcl, k = k)
plot(tmp[, c("x", "y")], col = groups, pch = groups, main = paste(method, "-", k, "groups"))

}

13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
single - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
complete - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
average - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
mcquitty - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
centroid - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
median - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ward.D - 5 groups

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ward.D2 - 5 groups

Figure 5:

The corresponding dendrograms.

14

dev.new(width = 12/2.54, height = 22/2.54)
par(mfrow = c(4,2), mar = c(2,2,2,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
for(method in methods){

hcl <- hclust(dist(tmp[, c("x", "y")]), method = method)
plot(hcl, labels = FALSE, hang = -1, main = paste(method, "-", k, "groups"))
rect.hclust(hcl, k = k)

}

15

0.00

0.02

0.04

0.06

single - 5 groups

dist(tmp[, c("x", "y")])

0.0
0.2
0.4
0.6
0.8
1.0
1.2

complete - 5 groups

dist(tmp[, c("x", "y")])

0.0
0.1
0.2
0.3
0.4
0.5
0.6

average - 5 groups

dist(tmp[, c("x", "y")])

0.0
0.1
0.2
0.3
0.4
0.5
0.6

mcquitty - 5 groups

dist(tmp[, c("x", "y")])

0.00
0.05
0.10
0.15
0.20
0.25
0.30

centroid - 5 groups

dist(tmp[, c("x", "y")])

0.0

0.1

0.2

0.3

median - 5 groups

dist(tmp[, c("x", "y")])

0

10

20

30

40

50

ward.D - 5 groups

0

2

4

6

8
ward.D2 - 5 groups

Figure 6:

We will now use a simple 2 dimentional simulated dataset to illustrate the difficulty to define a good clustering
solution and how each method solves differently this question. Clusters are groups of similar observations.
More specifically ideal clusters should have :

16

1. low within cluster disance : the distance between observations from the same cluster should be low
2. high between cluster distance : the distance between observations from different clusters should be high
3. discontinuity : you don’t have intermediate observations that fall between clusters

These different crition are not always compatible. In the following simulated example, the clusters have
mainly been defined based on the discontinuity principle (there are “gaps” without observations between
these 5 clusters). But the clusters have very different shapes and sizes (number of observations and within
cluster distance). If you take into account the distances there are many incongruities in how these clusters
have been defined. For example :

• Clusters 1 and 2 are very compact and clearly separated but their center are very close. The distance
between observations form cluster 1 and 2 are lower than most of the distances between observations
inside cluster 5. This cluster is much larger and contains many observations that are not very similar
to each other.

• Cluster 4 is very elongated. The observations at the bottom of cluster 4 are closer to some observations
in cluster 5 than to observations at the top of their own clusetr

• Cluster 3 is rather different from any other cluster. Are cluster with only one observation really useful
???

set.seed(123)
cl1 <- cbind(x = rnorm(15, 3, 0.2), y = rnorm(15, 10, 0.2), cl = 1)
cl2 <- cbind(x = rnorm(15, 4.5, 0.2), y = rnorm(15, 10, 0.2), cl = 2)
cl3 <- cbind(x = 2, y = 7, cl = 3)
cl4 <- cbind(x = runif(20, 8, 8.5), y = runif(20, 6, 13), cl = 4)
cl5 <- cbind(x = runif(200, 0, 12), y = runif(200, 0, 5), cl = 5)
cl <- rbind(cl1, cl2, cl3, cl4, cl5)

Representation of the groups in 2 dimensions (here the full dimensions of this very simple dataset) :
dev.new(width = 9/2.54, height = 7/2.54)
par(mar = c(2.5,2.5,2,4), mgp = c(1.7, 0.6, 0), cex = 0.8, las = 1)
plot(cl[, c("x", "y")], col = cl[,"cl"], pch = cl[,"cl"],

main = '"True" clusters based on discontinuity')
legend("right", col = 1:5, pch = 1:5, legend = 1:5,

xpd = NA, inset = -0.2, bty = "n", title = "Cluster")

0 2 4 6 8 10 12

0

2

4

6

8

10

12
"True" clusters based on discontinuity

x

y

Cluster
1
2
3
4
5

Figure 7:

17

Because hierarchical clustering is mainly based on distances, the solutions found by hclust are rather different.
For example none of the methods consider that Cluster 1 and 2 are separated clusters. They will become
seprated clusters if you consider much more clusters and you will first need to divide cluster 5 in many
smaller clusters.
The different gouping methods deal also differently with the outlier value forming cluster 3. For example the
centroïd methods tend to keep it in a separate cluster which might be useful if you need to spot unusual
values. Other grouping methods like “ward” tend to add this outlier to one of the existing groups which
might be useful if you want to ignore these unusual values and concentrate on the “main” patterns.

NB : other algorithms than Hierarchical Clustering can be based mainly on discontinuities (for example
“DBSCAN”) and will find the same solution as the simulated one.
dev.new(width = 12/2.54, height = 22/2.54)

par(mfrow = c(4,2), mar = c(2,2,2,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
for(method in methods){

hcl <- hclust(dist(cl[, c("x", "y")]), method = method)
groups <- cutree(hcl, k = k)
plot(cl[, c("x", "y")], col = groups, pch = groups, main = paste(method, "-", k, "groups"))

}

18

0 2 4 6 8 10 12
0
2
4
6
8

10
12

single - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

complete - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

average - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

mcquitty - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

centroid - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

median - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

ward.D - 5 groups

0 2 4 6 8 10 12
0
2
4
6
8

10
12

ward.D2 - 5 groups

Figure 8:

The corresponding dendrograms. NB : the colors represent here the “true” clusters has they have been
simulated. These colors do not correspond to the colors on the previous graphs

19

dev.new(width = 12/2.54, height = 22/2.54)
par(mfrow = c(4,2), mar = c(2,2,2,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
for(method in methods){

hcl <- hclust(dist(cl[, c("x", "y")]), method = method)
plot(hcl, labels = FALSE, hang = -1, main = paste(method, "-", k, "groups"))
symbols(x = 1:nrow(cl), y = rep(-8*max(hcl$height)/100, nrow(cl)),

rectangles= cbind(rep(1, nrow(cl)), max(hcl$height)/10),
bg= cl[,"cl"][hcl$order], fg = NA, add=TRUE, inches=FALSE)

rect.hclust(hcl, k = k)
}

20

0.0
0.5
1.0
1.5
2.0
2.5
3.0

single - 5 groups

dist(cl[, c("x", "y")])

0

5

10

complete - 5 groups

dist(cl[, c("x", "y")])

0

2

4

6

8
average - 5 groups

dist(cl[, c("x", "y")])

0

2

4

6

8
mcquitty - 5 groups

dist(cl[, c("x", "y")])

0

1

2

3

4

centroid - 5 groups

dist(cl[, c("x", "y")])

0

1

2

3

4

median - 5 groups

dist(cl[, c("x", "y")])

0
50

100
150
200
250
300
350

ward.D - 5 groups

0
10
20
30
40
50
60

ward.D2 - 5 groups

Figure 9:

21

1.3.4 Flexible-Beta clustering

It can be shown that all the grouping methods from hclust are particular cases of a “general agglomerative
clustering model” described by 4 parameters : alpha1, alpha2, beta and gamma ’see Legendre & Legendre
2012 p 367 and table 8.9).
Flexible-Beta clustering is a specific use of this generalized model that has gained a lot of popularity in
Ecology in the recent years. Beta can take different values between -1 and +1 while the other parameters are
fixed to be alpha1 = alpha2 = (1-beta)/2 and gamma = 0. Equivalently, beta = 1 - (alpha1 + alpha2). A
beta value close to 1 tends to produce long chaining (like single linkage) and negative values close to -1 tend
to produce well separated groups. A value of Beta = -0.25 is very popular in community ecology and tends
to produces intermediate results between average linkage and complete linkage.

This method is implemented in cluster::agnes
Eucl <- dist(cl[, c("x", "y")])
hcl <- cluster::agnes(Eucl, method='flexible',

par.method=c(0.625,0.625,-0.25, 0))
by default, if par.method is of length 1 the value is the one of alpha_1 and the other
parameters are constrained to produce the Felxible-Beta clustering approach.
So you can obtain the same results as follows :
beta <- -0.25
hcl <- cluster::agnes(Eucl, method='flexible', par.method= (1-beta)/2)

transform into hclust object and cut the tree...
hcl <- as.hclust(hcl)
groups <- cutree(hcl, k = k)

Plot the results

dev.new(width = 15/2.54, height = 7/2.54)
par(mfrow = c(1,2), mar = c(1.5,3.5,2.5,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
plot(hcl)
symbols(x = 1:nrow(cl), y = rep(-8*max(hcl$height)/100, nrow(cl)),

rectangles= cbind(rep(1, nrow(cl)), max(hcl$height)/10),
bg= cl[,"cl"][hcl$order], fg = NA, add=TRUE, inches=FALSE)

rect.hclust(hcl, k = k)

plot(cl[, c("x", "y")], col = groups, pch = groups, main = "Flexible Beta Clustering \n(Beta = -0.25)")

22

1 15 2 4 12 5 7 13 14 8 9 10 3 11 6 16 27 17 25 23 18 20 22 21 19 30 29 24 26 28 32 33 44 47 43 50 48 36 42 41 34 39 46 35 51 38 40 37 49 45 3
1

82 18
2 92 10
8

23
7

22
0 61 14
2

11
2

25
0 73 22
3

13
6 75 10
3

20
9

24
0

17
5

17
9

10
1

13
4

16
5

14
8

17
3

24
5

19
0

21
7

19
8

21
6

11
6

17
6

12
5

16
3 59 12
8 90 13
0

18
3

18
9

23
3

17
0

17
8

21
9 63 10
0

21
4

24
2 78 12
6

10
4

23
5

14
3

10
6

16
0

19
3

16
4

18
4

18
0

20
5

19
9 52 15
0

19
7 87 16
9

20
3 69 14
6 79 15
7

14
4

11
9

12
4

13
2

10
2

11
8

20
1 53 15
8

17
7 83 21
3 99 14
5

21
0

22
6 55 56 88 10
9

17
4 60 96 20
2 54 18
1 85 22
9

20
4

17
1

24
8

11
4

13
7

14
1

16
6 67 12
2

22
2 94 71 91 57 23
4

16
1

22
7

23
6 77 20
0 95 24
4

15
6 68 23
9

13
8

14
9

23
2 98 20
6

15
9

11
7

12
7

12
3

24
9 58 17
2

10
7

12
0

18
6

19
5

21
5 89 13
5

13
1

20
7

19
2

19
4

15
1

16
2

25
1 62 19
6

24
1 66 13
3

10
5

15
4 76 23
0

24
6 65 16
7

22
4 74 22
8

11
5 64 21
1

22
5

18
5

14
7

19
1

18
7 84 11
3

16
8

24
7

12
1

15
2

21
8 72 11
0

12
9

20
8 97 15
3 70 21
2 81 22
1

14
0

18
8

23
1 80 86 11
1 93 13
9

15
5

24
3

23
8

0

20

40

60

80

Cluster Dendrogram

H
ei

gh
t

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Flexible Beta Clustering
(Beta = -0.25)

y

Figure 10:

23

1.3.5 Interpretation of the dendrogram and common pitfalls

The order of the labels is arbitrary. You should look only at the topology of the dendrogram to evaluate the
distances and hierarchical relationships between the observations. This order can be changed (but remains
constrained by the topology)

The length of the branches is not important. The position of the nodes represents the distance between
observations or clusters.

2 dendrograms are stricly equivalent if their topology is the same (the branches lead to the same observations
on the leaves) and the “height” of their nodes is the same.

For example the 3 following dendrograms are strictly equivalent (the order of the “leaves”, the length of the
branches are diferent but the topology of the tree is identical and all the nodes are at the same position on
the x axis).

The distance between A and B or F and G is 1. The maximum distance between C and the group AB is 4
(maximum distance because we used the default “complete linkage”).

In the two first dendrograms : G and D are next to each other on the x axis. However they are in completely
different clusters and they are probably quite disimilar. G is more similar to H than to D.
tmp <- c(1, 2, 5, 8, 10, 16, 17, 19)
names(tmp) <- LETTERS[seq_along(tmp)]
hcl <- hclust(dist(tmp))

dev.new(width = 18/2.54, height = 6/2.54)

par(mfrow = c(1,3), mar = c(2,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
plot(hcl, main ="")
plot(hcl, hang = -1, main ="")
plot(reorder(hcl, wts = tmp), hang = -1, main ="")

H
F G
D E

C
A B

0

5

10

15

H
ei

gh
t

H F G D E C A B

0

5

10

15

H
ei

gh
t

A B C D E F G H

0

5

10

15

H
ei

gh
t

Figure 11:

24

1.3.6 Basic dendrograms manipulation and graphs

The typical operations you may want to do on a dendrogram :

• cut the tree at a given height or for a given number of groups to attribute each observation to a cluster
(cutree)

• add information on the graph to visualize the groups (boxes, numbers, colors) (rect.hclust)
• add colors or symbols with external data (supplementary variable) to help the interpretation (points,

symbols)
• zoom into the dendrogram or plot only a part of it when the dendrogram is too big
• reorder the leaves of the dendrogram (reorder)

The ouput of hierarchical clustering can be stored in two types (classes) of R objects : hclust (the default
output of hclust function) and dendrogram. The hclust object is simpler and alows you to make basic
plots that will cover 80% of your needs. dendrogram objects are more complex but they provide a much
more diversified set of tools to manipulate and plot them (particularly with the addition of dendextend
package). You can for example plot horizontal dendrograms, customize the branches appearance (color, line
type), add a number on the branches for each group,. . . You can always transform one type into the other
with the functions as.dendrogram and as.hclust.

As an example dataset, we will use a subsample of the iris dataset.
set.seed(1)
d <- iris[sample(1:nrow(iris), 24),]
d[,1:4] <- scale(d[,1:4]) # standardise the first 4 columns
hcl <- hclust(dist(d[,1:4]), method = "ward.D")

The object contains many information that can be used eg the labels and the order of the observations in the
dendrogram (relative to the original dataset)
str(hcl)

List of 7
$ merge : int [1:23, 1:2] -13 -1 -22 -2 -14 -8 -4 -21 -5 -16 ...
$ height : num [1:23] 0 0.133 0.287 0.291 0.316 ...
$ order : int [1:24] 24 10 22 1 11 5 12 18 7 15 ...
$ labels : chr [1:24] "40" "56" "85" "134" ...
$ method : chr "ward.D"
$ call : language hclust(d = dist(d[, 1:4]), method = "ward.D")
$ dist.method: chr "euclidean"
- attr(*, "class")= chr "hclust"

You can cut the tree to classify the observations in different groups based on a desired number of groups (k)
or the “height” on the dendrogram (h)
cutree(hcl, k = 3)

40 56 85 134 30 131 137 95 90 9 29 25 143 53 105 68 97 132 51 102 122 28 84
1 2 2 2 1 3 3 2 2 1 1 1 2 3 3 2 2 3 3 2 2 1 2
16
1
cutree(hcl, h = 5)

40 56 85 134 30 131 137 95 90 9 29 25 143 53 105 68 97 132 51 102 122 28 84
1 2 2 2 1 3 3 2 2 1 1 1 2 3 3 2 2 3 3 2 2 1 2

25

16
1

There is an equivalent function for dendrogram objects but only in the dendextend package. This function
has more options. In particular you can chose to display the result in the order of the dataset (as for hclust
objects) or in the order of the dendrogram. Note however that the numerotation is not the same (for example
observation 40 can be in group “1” or “2”). The grouping solution is the same but the labels are different
and arbitrary. This might have some consequences in the presentation of the results (see an example at the
end of the section about heatmaps)
dend <- as.dendrogram(hcl)
dendextend::cutree(dend, k = 5, order_clusters_as_data = FALSE)

16 9 28 40 29 30 25 132 137 105 131 53 51 85 90 68 95 56 97 134 84 122 143
1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5
102
5
dendextend::cutree(dend, k = 5, order_clusters_as_data = TRUE)

40 56 85 134 30 131 137 95 90 9 29 25 143 53 105 68 97 132 51 102 122 28 84
1 2 2 3 1 4 4 2 2 1 1 1 3 4 4 2 2 4 4 3 3 1 3
16
5

To obtain a clustring numerotation with numbers matching the cluster order (here observation 40 is well in
group 2):
tmp <- dendextend::cutree(dend, k = 5, order_clusters_as_data = FALSE)
tmp[order(order.dendrogram(dend))]

40 56 85 134 30 131 137 95 90 9 29 25 143 53 105 68 97 132 51 102 122 28 84
2 4 4 5 2 3 3 4 4 2 2 2 5 3 3 4 4 3 3 5 5 2 5
16
1

Plotting and adding boxes to show the groups is easy. It is possible to add annotations on the groups below
or above the boxes but this is not very straighforward. . .
NB : the colors here are not very useful. . .
dev.new(width = 12/2.54, height = 8/2.54)
par(mar = c(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8)
plot(hcl, hang = -1)
rect.hclust(hcl, k = 3, border = c("dodgerblue", "orangered", "gold"))

compute the position of the labels on the x axis (this is the crazy part ;-))
cluster <- cutree(hcl, k = 3)
clustab <- table(cluster)[unique(cluster[hcl$order])]
xposition <- cumsum(c(0.5,clustab[-length(clustab)])) + clustab/2

add this text in the bottom margin
mtext(text = c("Group 1", "Group 2", "Group 3"),

side = 1, line = 1, at = xposition, adj = 0.5,
col = c("dodgerblue", "orangered", "gold"))

add the same text on top of the boxes

26

text(labels = c("Group 1", "Group 2", "Group 3"),
x = xposition, y = 8, adj = 0.5,
col = c("dodgerblue", "orangered", "gold"))

16 9 28 40 29 30 25 13
2

13
7

10
5

13
1 53 51 85 90 68 95 56 97 13
4 84 12
2

14
3

10
2

0
5

10
15

20

Cluster Dendrogram

hclust (*, "ward.D")
dist(d[, 1:4])

H
ei

gh
t

Group 1 Group 2 Group 3

Group 1 Group 2 Group 3

Figure 12:

Add information from external data : here the species. Change the labels, color the labels and add colored
symbols for each species. Note that you must respect the order of the observations in the dendrogram
provided by hcl$order.
plot without labels, x axis label (`xlab`), title (`main`) and subtitle (`sub`)
dev.new(width = 12/2.54, height = 8/2.54)
par(mar = c(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8)
plot(hcl, hang = -1, labels = FALSE, sub = "", xlab = "", main = "")
add manualy the labels (`las=2` to have vertical labels, `cex=0.8` for smaller labels)
mtext(text = d$Species[hcl$order], side = 1, line = -0.5, at = 1:nrow(d),

las = 2, cex = 0.8,
col = c("dodgerblue", "orangered", "gold")[d$Species[hcl$order]])

add symbols
points(x = 1:nrow(d), y = rep(-0.5, nrow(d)), cex = 1.5,

pch = c(15, 16, 17)[d$Species[hcl$order]], # chape of the points
col = c("dodgerblue", "orangered", "gold")[d$Species[hcl$order]])

add legend
legend(x = "topright", pch = c(15, 16, 17), legend = levels(d$Species),

col = c("dodgerblue", "orangered", "gold"), bty = "n", pt.cex = 1.5)

27

0
5

10
15

20
H

ei
gh

t

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
vi

rg
in

ic
a

ve
rs

ic
ol

or
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

setosa
versicolor
virginica

Figure 13:

When there are many observations, adding labels or symbols is not an option because the graph will quickly
become difficult to read. In that case adding a colored band is generaly the best option to visualize an
external supplementary variable. This can be done with the symbols function.
dev.new(width = 8/2.54, height = 6/2.54)
par(mar = c(1.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8)
plot(hcl, labels = FALSE, hang = -1, main = "")
symbols(x = 1:nrow(d), y = rep(-2, nrow(d)),

rectangles= cbind(rep(1, nrow(d)), 3),
bg= c("dodgerblue", "orangered", "gold")[d$Species[hcl$order]],
fg = NA, add=TRUE, inches=FALSE)

legend(x = "topright", legend = levels(d$Species), border = NA,
fill = c("dodgerblue", "orangered", "gold"), bty = "n")

0
5

10
15

20
H

ei
gh

t

setosa
versicolor
virginica

Figure 14:

The following code chunk is a little more complicated but it will be independent of the y axis scale. (the
result is identical and not shown here)
plot(hcl, labels = FALSE, hang = -1, main = "")
symbols(x = 1:nrow(d), y = rep(-8*max(hcl$height)/100, nrow(d)),

28

rectangles= cbind(rep(1, nrow(d)), max(hcl$height)/10),
bg= c("dodgerblue", "orangered", "gold")[d$Species[hcl$order]],
fg = NA, add=TRUE, inches=FALSE)

legend(x = "topright", legend = levels(d$Species), border = NA,
fill = c("dodgerblue", "orangered", "gold"), bty = "n")

You can reorder an hclust object with a dedicated function from package vegan. Here we reorder the
observations along the first axis of a principal component analysis. this is not very usefull here but in
many circumstances this can improve the readability of the dendrogram. (NB dendroghram objects can be
reordered directly with the reorder.dendrogram function)
dev.new(width = 8/2.54, height = 6/2.54)
par(mar = c(2.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8)

pca <- princomp(d[,-5])
tmp <- reorder(hcl, wts = order(pca$scores[,"Comp.1"]))
plot(tmp, hang = -1, labels = FALSE, sub = "", xlab = "", main = "")
add manualy the labels (`las=2` to have vertical labels, `cex=0.8` for smaller labels)
mtext(text = d$Species[tmp$order], side = 1, line = -0.5, at = 1:nrow(d),

las = 2, cex = 0.6,
col = c("dodgerblue", "orangered", "gold")[d$Species[tmp$order]])

0
5

10
15

20
H

ei
gh

t

ve
rs

ic
ol

or
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
ve

rs
ic

ol
or

ve
rs

ic
ol

or
vi

rg
in

ic
a

vi
rg

in
ic

a
vi

rg
in

ic
a

vi
rg

in
ic

a
ve

rs
ic

ol
or

ve
rs

ic
ol

or
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

se
to

sa
se

to
sa

Figure 15:

hclust objects are simpler and will do the job most of the time. With dendrogram object you can do much
more. See the dendextend vignette to have an idea of the possibilities. However keep in mind that it is often
better to keep the graphs as simple as possible and that colors are often misused in graphical representation.

Here are a few things that you can do with dendrogram objects and that are impossible or very difficult to
do with hclust objects.

Plot a horizontal dendrogram :
dev.new(width = 10/2.54, height = 8/2.54)

dend <- as.dendrogram(hcl)
par(mar = c(2.5,0.5,0.5,2), mgp = c(2, 0.6, 0), cex = 0.7)
plot(dend, horiz = TRUE)

29

https://cran.r-project.org/web/packages/dendextend/vignettes/Quick_Introduction.html

20 15 10 5 0

16
9
28
40
29
30
25
132
137
105
131
53
51
85
90
68
95
56
97
134
84
122
143
102

Figure 16:

Zoom into the dendrogram to plot only one of the groups with xlim and ylim. Very usefull when the
dendrogram is too big and you want to examine more closely one of the clusters. . . However this is not
perfect because as you can see, labels from another cluster are still visible below the x axis
dev.new(width = 8/2.54, height = 6/2.54)
par(mar = c(2.5,0.5,0.5,2), mgp = c(2, 0.6, 0), cex = 0.7)
plot(dend, horiz = TRUE, main = "", ylim = c(13.5, 24.5), xlim = c(5,0))
add symbols
points(y = 14:24, x = rep(0, nrow(d))[14:24], cex = 1.5,

pch = c(15, 16, 17)[d$Species[hcl$order]][14:24], # chape of the points
col = c("dodgerblue", "orangered", "gold")[d$Species[hcl$order]][14:24])

add legend
legend(x = "topleft", pch = c(15, 16, 17), legend = levels(d$Species),

col = c("dodgerblue", "orangered", "gold"), bty = "n", pt.cex = 1.5)

5 4 3 2 1 0
131
53
51
85
90
68
95
56
97
134
84
122
143
102setosa

versicolor
virginica

Figure 17:

An other and arguably better solution is to use the dedicated function from dendextend that will create a
list with the “sub-dendrograms”

30

dev.new(width = 8/2.54, height = 6/2.54)
library(dendextend)
dend_list <- get_subdendrograms(dend, k = 3)
par(mar = c(2.5,0.5,0.5,2), mgp = c(2, 0.6, 0), cex = 0.7)
plot(dend_list[[2]], horiz = TRUE)
points(y = 1:11, x = rep(0, nrow(d))[14:24], cex = 1.5,

pch = c(15, 16, 17)[d$Species[hcl$order]][14:24], # chape of the points
col = c("dodgerblue", "orangered", "gold")[d$Species[hcl$order]][14:24])

add legend
legend(x = "topleft", pch = c(15, 16, 17), legend = levels(d$Species),

col = c("dodgerblue", "orangered", "gold"), bty = "n", pt.cex = 1.5)

3.0 2.5 2.0 1.5 1.0 0.5 0.0

85
90
68
95
56
97
134
84
122
143
102setosa

versicolor
virginica

Figure 18:

You can also cut the tree at a certain height (k groups option is not available). You then obtain a list of
trees above or below the cut
tmp <- cut(dend, h = 5)
tmp

$upper
'dendrogram' with 2 branches and 3 members total, at height 23.13304
##
$lower
$lower[[1]]
'dendrogram' with 2 branches and 7 members total, at height 4.125621
##
$lower[[2]]
'dendrogram' with 2 branches and 6 members total, at height 2.975649
##
$lower[[3]]
'dendrogram' with 2 branches and 11 members total, at height 3.101122
dev.new(width = 8/2.54, height = 5/2.54)
par(mar = c(2.5,0.5,0.5,2), mgp = c(2, 0.6, 0), cex = 0.7)
plot(tmp$upper, horiz = TRUE)

31

20 15 10 5 0

Branch 1

Branch 2

Branch 3

Figure 19:

plot(tmp$lower[[3]], horiz = TRUE)

3.0 2.5 2.0 1.5 1.0 0.5 0.0

85
90
68
95
56
97
134
84
122
143
102

Figure 20:

Easier way to color the labels and ad a number to the clusters. Remember that the group numbers provided
here will generally be different from the group numbers provided by cutree (based on the order of the
dataset)
dev.new(width = 10/2.54, height = 8/2.54)
par(mar = c(2.5,0.5,0.5,2), mgp = c(2, 0.6, 0), cex = 0.7)
tmp <- dend
labels_colors(tmp) <- c("dodgerblue", "orangered", "gold")[d$Species[order.dendrogram(tmp)]]
tmp <- color_branches(tmp, col = "black", groupLabels=TRUE, k = 3)
plot(tmp, horiz = TRUE)
rect.dendrogram(tmp, k = 3, horiz = TRUE)

32

20 15 10 5 0

1
16
9
28
40
29
30
25

2

3

132
137
105
131
53
51
85
90
68
95
56
97
134
84
122
143
102

Figure 21:

It is also possible to add cluster labels at different levels. Here for example Group A contains groups 1 and 2
dev.new(width = 10/2.54, height = 8/2.54)
par(mar = c(2.5,0.5,0.5,2), mgp = c(2, 0.6, 0), cex = 0.7)
tmp <- dend
labels_colors(tmp) <- c("dodgerblue", "orangered", "gold")[d$Species[order.dendrogram(tmp)]]
tmp <- color_branches(tmp, col = "black", groupLabels=c("A", "B"), k = 2)
tmp <- color_branches(tmp, col = "black", groupLabels=TRUE, k = 4)
plot(tmp, horiz = TRUE)

20 15 10 5 0

A

B

1

2

16
9
28
40
29
30
25

3

4

132
137
105
131
53
51
85
90
68
95
56
97
134
84
122
143
102

Figure 22:

33

1.4 K-means and K-medoids partitioning

K-means and K-medoids are two related non hierarchical clustering approaches. The user have to decide the
number of clusters wanted and the algorithms will create groups that minimize the within group (squared)
Euclidean distances (k-means) or any distance index (k-medoids). If a Hellinger tranformation is applied on
the dataset before applying the k-means algorithms, the distance minimized is the Hellinger distances which
makes the k-means algorithm adapted for species composition data (minimizing the effect of double 0).

A widely used algorithm for k-medoids clustering is PAM = Partitionning Around Medoïds. PAM and
k-medoids are often used as synonyms.

Both algorithms find their solution by an iterative process. As a consequence you might end up with slightly
different results if you repeat the analysis several time. A common practice is to run the analysis several
time and take an average of the solutions or a majority vote.

There are some differences between the algorithms :

• k-means works on the raw data (and computes Euclidean distances) while PAM works on a distance
matrix

• k-means is based on centroïds ie the avereage of the variables of each cluster that do not corespond to
a really existing observation/point. PAM is based on medoïds ie really existing observations/points
that are considered as characteristic of the cluster

Example with the scaled iris dataset and the Euclidan distance for both methods :
iris_scaled <- scale(iris[,1:4])
iris_euclid <- dist(iris_scaled)

set.seed(123) # to be sur to obtain the same result at each time
: nstart = 50 --> the k-means is repeated 50 times and a concensus solution is provided
KM <- kmeans(iris_scaled, centers = 3, nstart = 50)
PAM <- cluster::pam(iris_euclid, k = 3)

Clusters and centroïds of the k-means
KM$cluster

[1] 1
[46] 1 1 1 1 1 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 2 2 3 3 3 3 3 3 3 2 2 3 3 3
[91] 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 3 2 2 2 2 2 2 3 3 2 2 2 2 3 2 3 2 3 2 2 3 2 2 2 2 2 2 3 3
[136] 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3
KM$centers

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 -1.01119138 0.85041372 -1.3006301 -1.2507035
2 1.13217737 0.08812645 0.9928284 1.0141287
3 -0.05005221 -0.88042696 0.3465767 0.2805873

Clusters and medoïds of the PAM
PAM$clustering

[1] 1
[46] 1 1 1 1 1 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 2 2 3 3 3 3 3 3 3 3 2 3 3 3
[91] 3 3 3 3 3 3 3 3 3 3 2 3 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 3 2 3 2 3 2 2 3 3 2 2 2 2 2 3 3
[136] 2 2 2 3 2 2 2 3 2 2 2 3 2 2 3

34

iris_scaled[PAM$medoids,]

Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] -1.0184372 0.7861738 -1.2791040 -1.3110521
[2,] 1.1553023 -0.1315388 0.9868021 1.1816087
[3,] -0.1730941 -0.5903951 0.4203256 0.1320673

compare the clustering solution of the 2 methods : only 4 differences /150
table(KM$cluster, PAM$clustering)

##
1 2 3
1 50 0 0
2 0 44 3
3 0 1 52

To have an idea of the best nulber of clusters for PAM you can compute it for several values of k and compare
the silhouette width (the higher the better). See also the section about cluster validation. . .
maxk <- 15
PAM <- as.list(vector(length = maxk))
sil_width <- vector(length = maxk)
for(k in 2:15) {

PAM[[k]] <- cluster::pam(iris_euclid, k = k)
sil_width[k] <- PAM[[k]]$silinfo$avg.width

}

dev.new(width = 10/2.54, height = 7/2.54)
par(mar = c(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
plot(sil_width, type = "b", xlab = "Number of Clusters")
abline(v = which.max(sil_width), lty = 2, col = "gray50")

2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Clusters

si
l_

w
id

th

Figure 23:

For k-means, vegan provides a nice cascadeKM function that authomatize the whole process.
It provides a graphical method and computes the “calinski” criterion (or the ssi criterion) to help you choose
the number of clusters. Here the best - the maximum in red - is = 2. According to the help of the function

35

: " Points marked in orange, if any, indicate partitions producing an increase in the criterion value as the
number of groups increases; they may represent other interesting partitions."

See also the section about cluster validation. . .
KM <- vegan::cascadeKM(iris_scaled, 2, 15)

dev.new(width = 16/2.54, height = 10/2.54)
plot(KM)

20 40 60 80 100 120 140

K-means partitions comparison

Objects

N
um

be
r o

f g
ro

up
s

in
 e

ac
h

pa
rti

tio
n

2
4

6
8

11
14

20 40 60 80 100 120 140 180 220

calinski
criterion

Values
2

4
6

8
11

14

180 220

Figure 24:

36

1.5 Clusters interpretation

For this section, we will work on a real dataset : pollen pellets collected by honey bees have been collected in
several sites in July, August, September and October. ~ 1000 pollen grains have been extracted and identified
up to the family, genus or species level.
d <- read.csv2("data/pollen/full_dataset.csv")
d <- d[d$Buffer == 1500,]
d <- data.frame(d[, c(2:5)], d[, 14:47])
d <- unique(d)
d <- na.omit(d)
d <- d[,c(1:4, which(colSums(d[,-c(1:4)]) >50)+4)]

Always check your data import !!
dim(d)
summary(d)

1.5.1 Clusters visualisation

1.5.1.1 Visualize the clusters with heatmaps

The main advantage of heatmaps (for hierarchical clustering) is that you can visualize the whole dendrogram
in front of the data matrix without choosing in advance the number of clusters you will consider. This can
really help you to decide which clusters are interpretable and how many clusters you want to use. All other
methods require that you “cut” first your dendrogram to define the groups.
select the columns to use
Y <- d[, -c(1:4)]
Y <- Y[, -which(colnames(Y) == "cen")]

add a row name composed of the Apiary code and the number of the month
d$Month <- factor(d$Month, levels = c("July", "August", "September", "October"))
rownames(Y) <- paste0(d$IDApiary, "_",

sprintf("%02.0f", as.numeric(d$Month)+6))

Simple heatmaps with default clustering (euclidean distance and complete linkage –> not very well adapted
here)
dev.new(width = 18/2.54, height = 14/2.54)
gplots::heatmap.2(as.matrix(Y))

37

iv
y

br
a tri

ph
a

ro
s ta
r

as
t

ba
l

ru
b vi
c

ap
i

un
k er
i

sa
l

ce
n

rh
a ci
s

ru
m pl
a

se
d lil re
n

ce
r

fru ep
i

ol
e

38B_0937A_0823A_0820A_0738A_0837A_0929A_0838A_0930B_1011B_0840C_1041A_1030B_0933B_098A_1040C_0941A_0911B_0929A_1033B_0839A_0840B_0843A_093A_098A_0953A_0811A_0953A_0929A_094A_091A_0953A_1015A_0934A_0927A_0935A_0930A_0921B_0923A_1035A_0845A_0833A_0733A_0843A_0840A_0930A_0858A_0851A_0821A_1040B_0940A_1021B_1045A_0949A_0956A_0958A_0931A_0921A_0939A_0911A_0849B_0921A_0840C_088A_0838C_094A_0827A_0854A_0933A_0930B_0857A_093A_0840A_0847A_081A_0815A_0857A_0856A_0821B_0834A_08

0 400 800
Value

0
15

00

Color Key
and Histogram

C
ou

nt

Figure 25:

Change the color palette and remove descriptive statistics that make the graph difficult to read
dev.new(width = 18/2.54, height = 16/2.54)
heatmap.2(as.matrix(Y),

col = colorRampPalette(c("white", "orangered")),
trace = "none", density.info=c("none"))

38

iv
y

br
a tri

ph
a

ro
s ta
r

as
t

ba
l

ru
b vi
c

ap
i

un
k er
i

sa
l

ce
n

rh
a ci
s

ru
m pl
a

se
d lil re
n

ce
r

fru ep
i

ol
e

38B_0937A_0823A_0820A_0738A_0837A_0929A_0838A_0930B_1011B_0840C_1041A_1030B_0933B_098A_1040C_0941A_0911B_0929A_1033B_0839A_0840B_0843A_093A_098A_0953A_0811A_0953A_0929A_094A_091A_0953A_1015A_0934A_0927A_0935A_0930A_0921B_0923A_1035A_0845A_0833A_0733A_0843A_0840A_0930A_0858A_0851A_0821A_1040B_0940A_1021B_1045A_0949A_0956A_0958A_0931A_0921A_0939A_0911A_0849B_0921A_0840C_088A_0838C_094A_0827A_0854A_0933A_0930B_0857A_093A_0840A_0847A_081A_0815A_0857A_0856A_0821B_0834A_08

0 400 800
Value

Color Key

Figure 26:

Custom dendrogram based on Hellinger distance.
transformation and compute the distances
hell_trans <- decostand(Y, "hellinger") # hellinger transformation
hell_dist <- dist(hell_trans) # hellinger distance between the rows (samples)
correlation between the columns (plant species) on the hellinger transformed data
Note that this must be later transformed into a distance measure with `as.dist(1-R)`
hell_cor <- cor(hell_trans)

rowClust <- hclust(hell_dist, method = "ward.D2") # ward clustering on the rows
colClust <- hclust(as.dist(1-hell_cor), method = "ward.D2") # clustering on the columns

dev.new(width = 18/2.54, height = 16/2.54)
heatmap.2(as.matrix(Y),

Colv = as.dendrogram(colClust), # column dendrogram with a dendrogram class
Rowv = as.dendrogram(rowClust),
col = colorRampPalette(c("white", "orangered")),

39

trace = "none", density.info=c("none"))

br
a vi
c

iv
y

ph
a tri ce
r

er
i

ru
b fru ep
i

un
k

ci
s

rh
a

ce
n lil ro
s

ap
i

ba
l

re
n

sa
l

ol
e

pl
a

ru
m

se
d

as
t

ta
r

20A_071A_0838A_0838C_0937A_0929A_0838A_0923A_0837A_0838B_093A_0857A_0930B_084A_0811A_0845A_0847A_0856A_0821B_0853A_0834A_0840A_0815A_0857A_0833A_0733A_0821A_0830A_0840C_0827A_0843A_0833A_0954A_0949B_0958A_0858A_0921B_1051A_0840B_0940A_1056A_0945A_0949A_0921A_1040A_0931A_0921A_0939A_098A_088A_0915A_0923A_1027A_0934A_0935A_0821B_0930A_094A_091A_0953A_0929A_0953A_1011A_093A_0911B_0830B_1040C_1033B_0839A_0840B_0833B_0941A_0941A_1030B_0940C_0943A_0911B_0929A_1035A_098A_10

0 400 800
Value

Color Key

Figure 27:

Highly customized heatmap. . .

The code is much longer but in my opinion this is really worth the effort. You will end up with a graphical
representation of your data that is highly complex but nevertheless readable. It is difficult to create a function
that will automate this because each case is slightly different and you have to make different choices for each
dataset. It is however quite easy to copy-paste that code and adapt it to your needs.

Here the color palette is a discrete gradient. When you have variables with different units it will not be
possible to use one unique gradient for all of them. In this situation the best option is generally to standardise
the data (for each column remove the mean and disvide by the standard deviation) and then represent in one
color the values that are much below average (eg < average - 1* SD) and in another color the values that are
much higher than average (eg >average + 1*SD).
custom dendrograms
transformation and compute the distances
hell_trans <- decostand(Y, "hellinger") # hellinger transformation

40

hell_dist <- dist(hell_trans) # hellinger distance between the rows (samples)
correlation between the columns (plant species) on the hellinger transformed data
Note that this must be later transformed into a distance measure with `as.dist(1-hell_cor)`
hell_cor <- cor(hell_trans)

rowClust <- hclust(hell_dist, method = "ward.D2") # ward clustering on the rows
colClust <- hclust(as.dist(1-hell_cor), method = "ward.D2") # clustering on the columns

reorder the dendrograms
This is optional but it generally improves readability.
However, you must be extra-careful when you need
to find positions in the dendrogram after the reordering
rowClust <- reorder(rowClust, rowMeans(Y))
colClust <- reorder(colClust, rev(colMeans((1-hell_cor))))

Optional but recommended : create a color palette with custom breaks
We want white when the pollen has not been observed (= 0) then a gradient from
yellow to red
mybreaks <- c(-1,1, 100, 250, 500, 750, 1000)
mypalette <- c("white",

colorRampPalette(c("lightyellow", "gold", "red2"))(length(mybreaks)-2))

Optional : Store a temporary matrix of the data with the 0 replaced by NA
The values of this matrix will be displayed on the heatmap
values <- Y
values[values==0] <- NA

Optional : Supplementary variable : different colors for each month
you might also for example add a scale for the silhouette statistic to visualise
which obsevtaions are probably missclassified or between 2 clusters
grcol <- c("lightgreen", "forestgreen", "lightblue", "steelblue")
grcol <- brewer.pal(4, "Paired")[c(3, 4, 1, 2)]
grcol <- grcol[d$Month]

Optional : find positions to add horizontal and vertical bars to separate the groups.
Here we choose arbitrarily 3 groups for the species (columns) and 5 groups for the
rows (samples)
tmp <- cutree(colClust, k = 3)[colClust$order]
colsep <- which(tmp[-1]!=tmp[-length(tmp)]) # where do we change the group ?
tmp <- cutree(rowClust, k = 5)[rev(rowClust$order)]
rowsep <- which(tmp[-1]!=tmp[-length(tmp)])

Optional : add a number and color the branches of the row dendrogram according
to the groups
library(dendextend)
branchcol = c("forestgreen", "lightgreen", "dodgerblue", "orange", "purple")
rowClust_withGroups <- as.dendrogram(rowClust)
rowClust_withGroups <- color_branches(rowClust_withGroups, col = branchcol,

41

groupLabels=TRUE, k = 5)

dev.new(width = 18/2.54, height = 22/2.54)
heatmap.2(as.matrix(Y), # must be a numeric matrix not a data.frame

trace = "none", density.info=c("none"),

Colv = as.dendrogram(colClust), # column dendrogram with a dendrogram class
Rowv = rowClust_withGroups,
breaks = mybreaks,
col = mypalette,

cellnote = values, notecex = 0.8, notecol="gray25", # numbers in the cells

RowSideColors = grcol, # supplementary variable (here monthes)

block separation (horizontal and vertical lines)
colsep = colsep, rowsep = rowsep, sepcolor="black",

size of the text and different parts of the graph
cexRow = 0.85, cexCol = 1.25, offsetCol = 0, offsetRow = 0,
margins = c(2.5, 4.5),
lhei = c(1,7), lwid = c(2,5),

options of the graduated legend
key.par=list(mar = c(3,2,2,2), mgp = c(1, 0.5, 0)),
key.title = "", key.xlab = "Number of pollen grains",
key.xtickfun=function() {return(list(at = c(0, 100, 250, 500, 750, 1000)/1000,

labels = c(0, 100, 250, 500, 750, 1000)))}
)

42

ph
a iv
y

br
a vi
c

pl
a

ru
m se
d ta
r

as
t

ba
l

re
n sa
l

ol
e

ce
n

rh
a

ro
s

ap
i lil ci

s
un

k
ep

i tri ce
r

er
i

ru
b fru

40A_08
34A_08
57A_08
15A_08
21B_08
53A_08
47A_08
56A_08
45A_08
11A_08
57A_09
3A_08
30B_08
4A_08
38C_09
37A_08
38B_09
23A_08
38A_09
29A_08
37A_09
1A_08
38A_08
20A_07
1A_09
53A_09
53A_10
29A_09
4A_09
11A_09
3A_09
15A_09
23A_10
27A_09
34A_09
35A_08
30A_09
21B_09
8A_09
8A_08
43A_09
11B_09
29A_10
8A_10
35A_09
33B_09
41A_10
41A_09
30B_09
40C_09
11B_08
33B_08
39A_08
40B_08
30B_10
40C_10
33A_07
33A_08
30A_08
40C_08
21A_08
27A_08
43A_08
54A_09
33A_09
49B_09
40B_09
40A_10
56A_09
49A_09
45A_09
21A_10
40A_09
21A_09
39A_09
31A_09
58A_09
58A_08
21B_10
51A_08

58 25 13 448 21 16 288 98 10 6
2 48 118 167 11 6 92 376 3 36 63 63

6 45 196 42 39 593 2 53 1
25 120 240 7 235 17 185 27 108 34

112 61 53 174 83 18 23 7 374 13 63
409 67 111 103 6 163 1 142

36 1 5 5 124 44 4 31 176 249 311 1 2
4 152 14 18 4 164 204 400 16 4 15 2 3

350 30 97 46 163 4 196 27 68 5 8
1 3 80 89 376 60 238 43 91 17

119 235 237 404 1 3
3 63 468 277 129 27 4 25 4

23 179 16 507 6 1 52 1 216
50 1 155 147 137 32 46 1 7 417 8
49 12 4 1 437 363 111

5 5 33 1 951
4 996

3 26 3 8 1 946 14
62 70 14 19 1 1 818 1 9 4
100 6 46 139 6 699 3

147 24 172 2 656
29 25 100 21 4 337 182 301

11 8 16 201 159 594 12
131 5 24 182 1 539 114 5

898 10 40 6 2
903 51 3 15 28
887 46 20 7 29 10
870 35 73 4 2 1 16
891 9 37 10 1 48 4
781 8 2 8 194 6 2
521 19 30 13 180 96 124 18
549 187 43 7 153 12 1 31 13 4
704 282 10 4
809 162 6 1 19 3
610 363 4 5 14 1 4
713 251 14 5 17 1
677 159 73 15 12 26 32 6
635 233 21 35 75 2
564 4 38 38 6 3 60 11 132 142
135 4 48 20 6 125 93 253 133 6 118 60

134 430 20 188 228
229 308 311 20 18 102 2 3 4 3
438 315 226 7 5 5 1 3
311 543 41 20 7 64 3 6 5
128 686 116 2 13 31 25
313 420 1 266
771 180 3 4 6 6 27 2
528 436 2 2 3 3 27
668 217 26 82 1 7
537 286 29 57 22 42 21 2 2 3
532 6 34 94 62 167 56 9 6 4 14 12 1 3
411 8 323 14 3 212 15 14
549 299 32 1 5 43 51 19 2
491 309 21 32 13 2 40 93
978 9 10 4
732 34 231 1 3

391 369 5 224 7
403 234 1 1 1 169 185 4 3
647 2 1 1 119 1 209 1 17 2

91 10 241 41 56 135 353 1 72
122 153 22 3 8 33 19 4 62 499 76

251 267 9 3 464 5
28 304 435 2 22 3 3 113 89

8 433 2 162 11 15 65 6 298
56 380 168 11 386
59 461 452 2 15 10

8 142 793 12 4 3 31 6
112 878 9 1
231 767 2
187 722 3 3 84 1
54 823 1 60 50 4 9

178 10 789 1 14 2 1 5
41 434 508 2 13 2
44 190 657 55 16 6 2 4 12 12 1
76 199 649 44 4 16 13

274 625 29 15 1 15 1 30 6 5
238 597 80 1 1 83
25 723 19 83 51 2 98
31 802 73 7 86 2
19 572 11 15 16 70 105 1 193

1

2

5

3

4

0 250 500 750
Number of pollen grains

Figure 28:

43

Important note

With the last method, the clusters have been numeroted in the order they appear in the dendrogram which
is easy and logical for discussion about these clusters. A problem that could appear is that if you use cutree
to obtain the clusters from you dendrogram they will be numeroted in the order they appear in the dataset,
not in the dendrogram. The groups will be the same but they arbitrary number will differ. . . You must use
an alternative method to obtain the same group names/numbers (these groups will be used below in other
cluster interpretation graphical methods).
Create the groups with the classical approach --> these ones will not match the
groups in our heatmap...
Groups5 <- factor(paste0("Grp", cutree(rowClust, k = 5)))

We use a slightly more complicated method just to have the same groups numbers as on
the last heatmap:
Groups5 <- cutree(as.dendrogram(rowClust), k = 5, order_clusters_as_data = FALSE)
Groups5 <- Groups5[order(order.dendrogram(as.dendrogram(rowClust)))]
Groups5 <- factor(paste0("Grp", Groups5))

Alternative methods for heatmaps

The main drawbacks of gplot::heatmap.2 are that :

• you can only add one supplementary variable
• there is no legend for the supplementary variable
• adding horizontal and vertical lines to separate the groups is not very traightforward

There are many other packages to do advanced heatmaps. Here are a few :

• pheatmap “Pretty heatmaps”. Easy option to separate the groups
• d3heatmap Interactive heatmap as html widgets. When you hover the mouse button on the heatmap, a

popup window appears with the colmns and row names and the value of the cell. You can also zoom in
and out.

• ComplexHeatmap the most advanced package (from Bioconductor, not on the CRAN). Very powerfull
in particular when you want to add many supplementary variables (with their legends). The main
draxback is that it is based on the

NB the installation process from bioconductor is different than the installation from CRAN. To install
ComplexHeatmap you must proceed as follows :
source("https://bioconductor.org/biocLite.R")
biocLite("ComplexHeatmap")

44

1.5.1.2 Visualize the clusters on a SPLOM

Each original plant species is a dimension and we can visualize the groups in these original dimensions with
a ScatterPlot Matrix (SPLOM). This is however quite difficult for large datasets (many variables or many
observations. . .).

Here we create a SPLOM of the 7 most abundant plant species with 5 clusters. Because the number of pollen
grains is heavily left skewed (many small values, few high values) we applied a square root transformation
to the data. A log transformation is another typical (but stronger) transformation in such situations. We
could also represent the Hellinger transformed data instead. The most abundant plant species are the most
important here because the clustering was performed on unscaled data. It would be much more difficult to
find the interesting dimensions (species) to plot if the clustering was based on scaled data. . .
dev.new(width = 18/2.54, height = 15/2.54)
pairs(sqrt(Y[,1:7]), gap = 0, oma=c(3,3,6,3), cex = 0.8,

col = Groups5, pch = as.numeric(Groups5))
legend("top", legend = levels(Groups5), col = 1:5, pch = 1:5,

xpd = NA, horiz = TRUE, bty = "n", inset = -0, pt.cex = 1)

bra

0 10 20 30 0 10 20 30 0 5 15

0
10

25

0
10

25

ivy

tri

0
10

25

0
10

25

pha

ros
0

10
20

0
10

20

ast

0 10 20 30 0 10 20 30 0 5 15 25 0 5 15

0
10

20

tar

Grp1 Grp2 Grp3 Grp4 Grp5

Figure 29:

45

1.5.1.3 Visualize the clusters on an ordination plot

One of the problems of the SPLOM is that it is difficult to use when you have many variables (here pollen
species). Ordinations are typically used to decrease the number of dimensions needed to represent a dataset.
The different clusters can then be visualized on an oridnation plot. This is probably the most frequent
approach for non hierarchical clustering. It might also be a good complement to heatmaps.

NMDS is usually the method that provides the best 2 dimensional solution (at least for visualisation purposes).
However here 2 dimensions would not be enough to visualize this complex dataset. We represent then the
groups with a 3 dimensions solution.

When the number of observations is too high and the plot over-crowded, an easy solution is to plot only a
random sub-sample of the observations.
dev.new(width = 18/2.54, height = 9/2.54)

NMDS <- MASS::isoMDS(hell_dist, k = 3)

initial value 24.199078
iter 5 value 14.439741
iter 10 value 13.526650
final value 13.488399
converged
n <- 15 # how many species to display ?

par(mfrow = c(1,2), mar = c(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
choices = c(1,2)
plot(NMDS$points[,choices], asp = 1,

pch = as.character(as.numeric(Groups5)), col = as.numeric(Groups5),
xlab = paste0("NMDS dim ", choices[1]),
ylab = paste0("NMDS dim ", choices[2]))

abline(v = 0, h = 0, col = "gray80", lty = 2)
spe <- wascores(NMDS$points[,choices], hell_trans)
ordilabel(spe[1:n,], labels = row.names(spe)[1:n], priority = n:1)

same graph for dimensions 1 and 3
choices = c(1,3)
plot(NMDS$points[,choices], asp = 1,

pch = as.character(as.numeric(Groups5)), col = as.numeric(Groups5),
xlab = paste0("NMDS dim ", choices[1]),
ylab = paste0("NMDS dim ", choices[2]))

abline(v = 0, h = 0, col = "gray80", lty = 2)
spe <- wascores(NMDS$points[,choices], hell_trans)
ordilabel(spe[1:n,], labels = row.names(spe)[1:n], priority = n:1)

46

1
3

4

4

13 2

3

2

5
5

5

1
3

5

2

3
5

3

2

3

4

5

3

1

4

4

5

55

5

4

4

1

3
3

4
2

2

22

2
2

4
5

13

1
5

5

4
5

5

4

4

4 4

5

4

1
5

1

5
5

13

5

1

3

3

5

1
1

5

5

3
3

4

1

5

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

NMDS dim 1

N
M

D
S

di
m

 2

rha
pla salunkrub

api
vic

bal
tar

ast

ros
pha

triivy

bra

1

3

4

4 1

3
2

3
2

5

5

5 1

3 5

2

3
5

3

2

3

4

5
3

1

4

4

5
5
5

5

4

4
1

33

4

2
2

2

2
22

4

5

1

3

1

5
5

4

5

5

4
4

4

4

5

4

1
5

1

5

5
13 5

1
33

5

1

1

55

3

3

4

1

5

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

1.0

NMDS dim 1

N
M

D
S

di
m

 3

rha

pla

sal

unkrub api

vicbal
tar

ast
ros

pha

tri

ivy bra

Figure 30:

par(mfrow = c(2,3))
for(k in 1:6){
NMDS <- isoMDS(hell_dist, k = k)
corr <- cor(dist(NMDS$points), hell_dist, method = "spearman")
plot(x = dist(NMDS$points), y = hell_dist)
title(paste0("Corr = ", round(corr,2)))
}

47

1.5.2 Clusters description

Compute descriptive statistics (quantiles, average) etc. . . for each group and use graphs to visualise them

1.5.2.1 Describe the clusters with simple graphs

To understand what are the characteristics of each group, you might also simply compare the values of each
variable between the clusters. You could compute simple descriptive statistics (eg the average of each pollen
species for each group) but a graphical representation is almost always better.

Note : You might be tempted to perform some statistical tests here like an ANOVA (eg aov(bra ~ Group,
data = tmp)). However the p-values you would obtain with such an approach would be mainly meaningless
because the information contained in the pollen (eg bra) has already been used to create the clusters.

You might however always do that with external variables that have not been used in the clustering to
create the clusters. For example you might perform a logistic regression to test if the sampling period is
different between the groups (eg glm(Period ~ Group, data = tmp, family = "binomial)). The period
was not used to create the clusters and the p-values would be valid. However you should use multiple testing
correction if you do many comparisons (eg Bonferoni coreection for a easy but very conservative method)
tmp <- Y
tmp$Group <- Groups5
tmp$Period <- d$Period
tmp$ID <- row.names(tmp)
tmp <- reshape2::melt(tmp, id = c("ID", "Period", "Group"),

variable.name = "Plant", value.name = "Nb")

Comparison of the 6 most abundant plants between groups
dev.new(width = 18/2.54, height = 12/2.54)

ggplot(tmp[tmp$Plant %in% c("bra", "ivy", "tri", "pha", "ros", "ast"),],
aes(y = Nb, x = Group)) +

geom_boxplot()+
geom_point(color = "gray75", alpha = 0.5, position = position_jitter(width = 0.1, height = 0)) +
facet_wrap(~Plant) +
theme_bw()

48

pha ros ast

bra ivy tri

Grp1 Grp2 Grp3 Grp4 Grp5 Grp1 Grp2 Grp3 Grp4 Grp5 Grp1 Grp2 Grp3 Grp4 Grp5

0

250

500

750

1000

0

250

500

750

1000

Group

N
b

Figure 31:

Another way to look at the same data . . .
dev.new(width = 18/2.54, height = 12/2.54)
ggplot(tmp[tmp$Plant %in% colnames(Y)[1:15],],

aes(y = Nb, x = Plant)) +
geom_boxplot()+
geom_point(alpha = 0.5, position = position_jitter(width = 0.1, height = 0)) +
facet_wrap(~Group, ncol = 2) +
scale_y_continuous(trans = "sqrt") + # uncomment this to have a square root scale
theme_bw()

49

Grp5

Grp3 Grp4

Grp1 Grp2

bra ivy tri pha ros ast tar bal vic api rubunk sal pla rha

bra ivy tri pha ros ast tar bal vic api rubunk sal pla rha

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

Plant

N
b

Figure 32:

Testing if the period differs between groups with a binomial GLM (= logistic regression). Then we perform
all pairwise post-hoc comparisons (with p-value correction) and represent the predicted probabilities on a
graph with a compact letters display (different letters means that the groups differences are statistically
significant).
Here all the groups are significantly different from each other with Group 1 clearly dominated by July/August
samples, group 2 and 3 dominated by September/October samples and Groups 4 and 5 more intermediate.
m <- glm(Period ~ Group, data = tmp, family = "binomial")
library(multcomp)
library(visreg)
mc <- glht(m, linfct = mcp(Group = "Tukey"))
summary(mc)

##
Simultaneous Tests for General Linear Hypotheses
##
Multiple Comparisons of Means: Tukey Contrasts
##
##
Fit: glm(formula = Period ~ Group, family = "binomial", data = tmp)
##
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
Grp2 - Grp1 == 0 2.1595 0.2397 9.010 < 1e-04 ***

50

Grp3 - Grp1 == 0 4.5109 0.2518 17.915 < 1e-04 ***
Grp4 - Grp1 == 0 3.6636 0.2329 15.730 < 1e-04 ***
Grp5 - Grp1 == 0 3.0758 0.2197 14.001 < 1e-04 ***
Grp3 - Grp2 == 0 2.3514 0.1949 12.062 < 1e-04 ***
Grp4 - Grp2 == 0 1.5041 0.1698 8.856 < 1e-04 ***
Grp5 - Grp2 == 0 0.9163 0.1512 6.060 < 1e-04 ***
Grp4 - Grp3 == 0 -0.8473 0.1865 -4.542 < 1e-04 ***
Grp5 - Grp3 == 0 -1.4351 0.1698 -8.454 < 1e-04 ***
Grp5 - Grp4 == 0 -0.5878 0.1402 -4.192 0.000258 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
plot(mc)
cld(mc)

dev.new(width = 8/2.54, height = 8/2.54)
par(mar = c(3.5,3.5,3,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
visreg(m, scale = "response", rug = FALSE,

ylab = "Probability to be a September/October sample")
mtext(text = cld(mc)$mcletters$Letters, line = 1, side = 3, at = ((0:4)+0.5)/5, cex = 0.8)

0.2

0.4

0.6

0.8

Group

Pr
ob

ab
ilit

y
to

 b
e

a
Se

pt
em

be
r/O

ct
ob

er
 s

am
pl

e

Grp1 Grp2 Grp3 Grp4 Grp5

a b e d c

Figure 33:

51

1.5.2.2 Describe the clusters with pseudo-supervised approaches (eg : classification tree)

Again this approach is rather circular : we will try to find the variales that predict/explain the clusters as
well as possible but the same variables have been used to create the clusters in the first place (this is why I
call it “pseudo-supervised”).
The aim here is purely descriptive (the aim is not to validate the clusters created).

Classification trees are easy to use and interpret and seem well suited for such a task. But you might use any
other regression/classification like method for which the interpretation is relatively easy and straight forward
(eg : logistic regression = binomial or multinomial GLM, Linear Discriminant Analysis, . . .). Note that if
these methods provide p-values they are not valid here. Cross-validation is also useless here (because the test
sets are never independent from the training set). So there is no way to “prune the tree” as is usually done
with classification trees.

Note that the classification tree method used here must not be confounded with a hierarchical clustering
approach. The classification tree is normally a supervised method - you partition one matrix based on
thresholds from another matrix of “explanatory variables”. The hierarchical clustering is an unsupervised
approach.

The classification trees have one major drawback : completely different trees might separate the clusters
(almost) as well as the tree provided by the rpart function. This will be particularly frequent when the
variables are highly correlated. So these classification trees generaly give you only a partial view of the
characteristics of the clusters.
library(rpart)
library(rpart.plot)

tmp <- Y
tmp$Group <- factor(paste0("Grp", cutree(rowClust, k = 5)))
m <- rpart(Group ~., data = tmp)
rpart.rules(m)

Group Grp1 Grp2 Grp3 Grp4 Grp5
Grp1 [.78 .06 .00 .06 .11] when bra < 372 & pha < 125 & ivy < 465 & tri < 427
Grp2 [.00 1.00 .00 .00 .00] when bra < 372 & pha < 125 & ivy >= 465
Grp3 [.00 .00 1.00 .00 .00] when bra < 372 & pha >= 125
Grp4 [.00 .00 .00 .90 .10] when bra < 372 & pha < 125 & ivy < 465 & tri >= 427
Grp5 [.00 .00 .00 .00 1.00] when bra >= 372
simple graph
prp(m, extra = 1, branch = 1) # basic graph

improved graph

dev.new(width = 12/2.54, height = 10/2.54)

prp(m, extra=1, branch=1, cex=0.7, digits=1,
round=1, split.cex=1.1, split.round=.5, under = FALSE,
split.box.col="lightgray", split.border.col = "darkgray",
yesno.yshift = 0.6, xsep=" | ")

52

bra < 372

pha < 125

ivy >= 465

tri < 427Grp2
0 | 15 | 0 | 0 | 0

Grp1
14 | 1 | 0 | 1 | 2

Grp4
0 | 0 | 0 | 9 | 1

Grp3
0 | 0 | 16 | 0 | 0

Grp5
0 | 0 | 0 | 0 | 21

yes no

Figure 34:

53

1.6 Clustering validation

The aim of clustering validation is to assess the “quality” of the clusters , ie to answer the following questions
:

1. How “good” are my clusters ?
2. How many clusters should I use ?
3. Which clustering method works “best” ?
4. Are the clusters “real” or am I creating clusters from random noise ?

The problem, as we have seen is that there is no easy answers to these question because the definition of a
“good” cluster will be different for different persons, different datasets, different questions.

Each discipline has developped specific ways to validate/characterise the clusters. For example, genomics,
phylogentics and community ecology tend to use methods that are particlarly adapted to the biological
aspects related to their clustering : indicator species, genes function, phyllogeny stability,. . .

There are howevere some descriptive statistics (clustering quality indices) and approaches that can be more
broadly applied.

Typically we can use internal criteria ie criteria based on the information present only within the cluster
and dataset. Ideally, the clusters chould be :

1. Interpretable : via visual inspection and expert knowledge eg heatmaps (less easy for huge datasets)
2. Compact : low distance between observations from the same cluster, no within cluster gaps
3. Well separated : high distance between clusters, no intermediate points
4. Stable : small perturations in the data should produce similar clusters
5. Robust : different clustering methods provide similar clusters on the same data. Clustering of the same

objects with different variables (eg a plant dataset and a insect dataset) provides similar clusters,. . .

Many indices have been developed to characterize some of these criterion but depending on the criterion
used the quality of the clusters and the number of clusters chosen might be very different. . .

You can also use external criteria : are these clusters congruent with external information that was not
used to create the clusters ? eg : do the clusters match the sampling structure, temporal or spatial structure,
groups that have not been used in the clustering,. . . Has the clustering good predictive for an external data
of interest ?

Frequently the answer to these question will be “it depends”. For example in community ecology the question
of “how many clusters should I use” is often difficult to answer because of the frequent highly hierarchical
structure of communities. You might for example have 2 main clusters that will differenciate vegetation
communities from forests and grasslands. These two groups will usually be very well separated. But of course
you might divide further the “forest” cluster into deciduous forests, coniferous forests and mixed forests
that might be less well seprated (intemediate conditions) but that can be nevertheless relevant. And for
example the deciduous forests can be even further separated in smaller groups depending on the underground,
humidity, climate,. . . Where you decide to stop is your decision based on the interpretability of the clusters
even if a clustering quality index tells you that 2 clusters is the best solution. . .

Sometimes clusters that are not well separated and not very compact might still be a usefull description and
simplification of reality.

In the end the interpretability of the cluster must be your main guide and the clustering validation indices
detailed below should just help you in your decision but they should not be the only criterion used. . .

Clustreing validation is a complex and growing research topic. A good starting point if you want to dig
deeper are several R packages dedicated to cluster validation with their associated vignettes or papers :
NbClust, clValid, optCluster, pvclust. . . The package cluster contains also several usefull functions

54

for cluster validation. you need to take the time to understand how these methods work because they are not
always applicable to all datasets (eg pvclust and the stability indices of clValid).

1.6.1 Silhouette width

The silhouette with is a very wildely used clustering validation index. It has several advantages : it is easy to
understand, easy to interpret, usable for any clustering algorithm, and it can provide an estimation of the
clustering quality for each observation, each cluster (average of the individual silhouettes of one cluster) or
for the whole clustering solution.
Here we will just present the index and its use when you have chosen one algothim and a number of clusters.
However, it can also be computed to compare different number of clusters and different algorithms (see in
the next sections).

It is a combined measure of the separatedness and the compactness of the clusters.

The computation works as follows :

1. compute A, the average distance between one point and all the points from the same cluster
2. compute B, the average distace between this point and all the points of his nearest cluster
3. the silhouette width for this point is : S = A-B / max(A,B)

You can then also estimate the average silhouette width for each cluster and for all clusters.

Interpretation :

• the values are comprised between -1 and 1 and should be maximized
• a silhouette width <0 means that the point is on average more close to the point of the nearest cluster

than to the points of his own cluster –> it is probably missclassified. . .
• a silhouette width = 0 means that the point is intermadiate between two clusters.
• a silhouette width >0 means that the point is welle separated fro his cluster

A drawback of this approach is that clusters with few points tend to have higher silhouette widths.

The basic code to compute silhouette width and produce a graphical representation is quite straightforward
(NB the code is not run here) :
dist_matrix <- dist(scale(iris[,1:4])) # Euclidean distance matrix
hcl <- hclust(dist_matrix, method = "ward.D2") # compute a hiererachical clustering
groups <- cutree(hcl, k = 10) # cut the tree to extract the groups
sil_width <- cluster::silhouette(groups, dist = dist_matrix) # compute the silhouette width
plot(sil_width, border=NA) # plot

With a little more work you can however greatly improve the visualisation. We use a fake dataset of random
uniform numbers for 2 variables x and y Here we add numbers and colors to the groups. We also highlight
the points with low silouhette width (<0.1) with gray squares on the x y full representation of the data (NB
in real life dataset you could do that on the results of an ordination). And we spot the same points on the
dendrograms by adding red rectangle along the x axis.

55

fake random dataset
set.seed(12)
tmp <- matrix(runif(1000), ncol = 2)
colnames(tmp) <- c("x", "y")

k = 4
mycols <- c("forestgreen", "dodgerblue", "orange", "purple")

Compute the clustering and transform into a dendrogram object with numbered groups
hcl <- hclust(dist(tmp), method = "ward.D2")
hcl_colored <- color_branches(as.dendrogram(hcl), col = mycols[1:k],

groupLabels=TRUE, k = k)

create the groups in the same order as the dendrogram
groups <- cutree(hcl_colored, k = k, order_clusters_as_data = FALSE)
groups <- groups[order(order.dendrogram(hcl_colored))] # to match the order of the data

Compute the silhouette width
sil_width <- cluster::silhouette(groups, dist = dist(tmp))

Spot the observations with a silhouette width < 0.1
Then create a vector of red colors for these point with a "bad" silhouette width
bad_sil_width <- sil_width[,"sil_width"] < 0.1
sil_width_colors <- c(NA, "orangered")[as.numeric(bad_sil_width)+1]
sil_width_colors <- sil_width_colors[order.dendrogram(hcl_colored)] # reorder like the dendrogram

x y Graph with the points with a silhouette width < 0.1 underlined by a gray square
dev.new(width = 18/2.54, height = 9/2.54)
par(mfrow = c(1,2), mar = c(2.5,2.5,2,1), mgp = c(1.5, 0.5, 0), cex = 0.8, las = 1)
plot(tmp[, c("x", "y")], col = mycols[groups], pch = groups,

main = paste0("Ward.D2 - ", k, " groups"))
points(tmp[bad_sil_width, c("x", "y")], pch = 0, col = "gray50", cex = 2)

Plot the dendrogram with groups and add a red rectangle label for the observations with
a silhouette width < 0.1
plot(hcl_colored, main = paste0("Ward.D2 - ", k, " groups"), leaflab = "none")
rect.hclust(hcl, k = k, border = mycols[1:k])
symbols(x = 1:nrow(tmp), y = rep(-8*max(hcl$height)/100, nrow(tmp)),

rectangles= cbind(rep(1, nrow(tmp)), max(hcl$height)/8),
bg= sil_width_colors,
fg = NA, add=TRUE, inches=FALSE)

56

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
Ward.D2 - 4 groups

x

y

0

2

4

6

8
Ward.D2 - 4 groups

1
2 3

4

Figure 35:

Plot the silouhette widths

dev.new(width = 14/2.54, height = 12/2.54)
plot(sil_width, col = mycols[1:k], border = NA, do.n.k = FALSE, main = "Silhouette Plot")

Silhouette width si

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette Plot

Average silhouette width : 0.37

j : nj | avei∈Cj si
1 : 70 | 0.56

2 : 162 | 0.29

3 : 107 | 0.49

4 : 161 | 0.28

Figure 36:

57

1.6.2 Choose the “best” number of clusters with the Gap statistic

Computes de difference the within cluster variation of the real dataset and the same value computed under
a “null hypothesis” dataset without clustering (for each variable : uniformly distributed random numbers
between the min and the max of that variable). The process is repeated several times (default = 100) to
obtain a standard error of the statistic. This is repeated for several k numbers of clusters

The higher the gap statistic the better the clustering. However the value tends to increase with higher number
of clusters. The one standard deviation rule is generally applied : Gap_k >= Gap_k+1 - se(Gap_k+1).
The functioncluster::maxSE can find this value for you. . .

This approaches has several disadvantages : the computation is slow, the interprtation of the gap statistic is
not very intuitive (imho),. . .
A major advantage however is that many other clustering statistics need at least two clusters to be computed.
So when the best solution is “2 clusters” you don’t know if this is because you really have 2 clusters or
because there is no clustering structure in the dataset. The gap statistic can be computed for 1 cluster and if
the best solution found is “1 cluster”, it means that there is probably no clustering structure in the dataset.

In the following example we see that for the iris dataset (ward.D2 hclust) the “best” number of clusters
would be 2 while for the random dataset the best number would be 1 which means that there is no clustering
structure in this dataset (which is expected because this is a random uniform dataset. . .)
Gap statistic on the iris dataset

dev.new(width = 16/2.54, height = 8/2.54)
par(mfrow = c(1,2), mar = c(2.5,3,3,1), mgp = c(1.8, 0.5, 0), cex = 0.8, las = 1)
mycut <- function(x, k) {list(cluster = cutree(hclust(dist(x), "ward.D2"), k = k))}
gap <- cluster::clusGap(scale(iris[,1:4]), mycut, K.max = 10)
best_gap <- cluster::maxSE(gap$Tab[,"gap"], gap$Tab[,"SE.sim"])
plot(gap, main = paste0("Gap Statistic iris data \nOptimal cluster number = ", best_gap))
abline(v = best_gap, lty = 2, col = "gray50")

gap statistic on a random dataset
gap <- cluster::clusGap(tmp, mycut, K.max = 10)
best_gap <- cluster::maxSE(gap$Tab[,"gap"], gap$Tab[,"SE.sim"])
plot(gap, main = paste0("Gap Statistic random data \nOptimal cluster number = ", best_gap))
abline(v = best_gap, lty = 2, col = "gray50")

58

2 4 6 8 10

0.25

0.30

0.35

0.40

0.45

0.50

Gap Statistic iris data
Optimal cluster number = 2

k

G
ap

k

2 4 6 8 10

0.23

0.24

0.25

0.26

0.27

Gap Statistic random data
Optimal cluster number = 1

k

G
ap

k

Figure 37:

59

1.6.3 Choose the “best” number of clusters with NbClust

A widely recongnized problem with the many clustering validation statistics available is that almost each
statistic will give you a different answer about the “best number of clusters” to use. The idea of the NbClust
package is to compute ~ 30 of these indices (including the gap statistic and the silhouette width) and let
them “vote” for the best number of clusters.

This is a very coarse approach. It can be applied only to one clustering algorithm at a time and only to
hierarchical clustering (with the different grouping methods of hclust) and k-means clustering. It is difficult
to use it to compare different algorithms (however you can get the results of all the computations). You also
have the “best” number for each statistic but sometimes the next best number might be almost as good.

The function also automatically prints a lot of messages that are impossible to supress which is painfull. . .

It can be however a very easy first step to have a rough estimate of a reasonable number of clusters in an
interactive session . . .

Example with the iris dataset and Hierarchical clustering with ward.D2 method. Most of the indices “vote”
for the 2 clusters solution but the 3 clusters solution is also quitepopular.
iris_scaled <- scale(iris[,1:4])
iris_dist <- dist(iris_scaled)

library(NbClust)
nb <- NbClust(data = iris_scaled, diss = iris_dist, distance = NULL,

method = "ward.D2", min.nc = 2, max.nc = 15, index = "alllong")

*** : The Hubert index is a graphical method of determining the number of clusters.
In the plot of Hubert index, we seek a significant knee that corresponds to a
significant increase of the value of the measure i.e the significant peak in Hubert
index second differences plot.
##

*** : The D index is a graphical method of determining the number of clusters.
In the plot of D index, we seek a significant knee (the significant peak in Dindex
second differences plot) that corresponds to a significant increase of the value of
the measure.
##

* Among all indices:
* 12 proposed 2 as the best number of clusters
* 6 proposed 3 as the best number of clusters
* 1 proposed 4 as the best number of clusters
* 3 proposed 5 as the best number of clusters
* 2 proposed 7 as the best number of clusters
* 4 proposed 15 as the best number of clusters
##
***** Conclusion *****
##
* According to the majority rule, the best number of clusters is 2
##
##

60

You can also compute the results for the k-means algorithm. Here both the 2 and 3 clusters solutions are
eauivalently popular.
nb <- NbClust(data = iris_scaled, diss = iris_dist, distance = NULL,

method = "kmeans", min.nc = 2, max.nc = 15, index = "alllong")

*** : The Hubert index is a graphical method of determining the number of clusters.
In the plot of Hubert index, we seek a significant knee that corresponds to a
significant increase of the value of the measure i.e the significant peak in Hubert
index second differences plot.
##

*** : The D index is a graphical method of determining the number of clusters.
In the plot of D index, we seek a significant knee (the significant peak in Dindex
second differences plot) that corresponds to a significant increase of the value of
the measure.
##

* Among all indices:
* 10 proposed 2 as the best number of clusters
* 10 proposed 3 as the best number of clusters
* 1 proposed 5 as the best number of clusters
* 2 proposed 10 as the best number of clusters
* 5 proposed 15 as the best number of clusters
##
***** Conclusion *****
##
* According to the majority rule, the best number of clusters is 2
##
##

61

1.6.4 Compare different algorithms and different number of clusters with the silhouette width
and Dunn index

The mytoolbox.R script contains a wrapper function NbClust2 based on NbClust but that facilitates the
comparison of different algorithms and different number of clusters.

It uses only the silhouette width and the Dunn index. The Dunn index is also a widely used index that is
quite easy to understand and interpret. It has a value between 0 and infinity and it should be maximized.
It is the ratio between the between cluster distance (separation) and within cluster maximum distance
(compactedness).

It can be computed as follows :

• compute A, the minimum distance between the points of the cluster and the points of the other clusters
• compute B, the maximum distance between the points within that cluster
• The Dunn index is the ratio A/B

Its drawbacks is that it can be computed only for each cluster or for all clusters but not for each point.
Another drawback is that the Dunn index is based on only two pairs of observations for each cluster so it is
quite sensitive to outliers.

The NbClust2 function will compute the silhouette width and Dunn index for diffeent algorithms (k-means
or hclust with any grouping method) and different number of clusters. The results can easily be ploted with
a dedicated plotting method based on ggplot.

You can also perform the computation on different distance matrices at once for hclust and for different
(transformed) datasets for k-means.

Simple example with default values fo he iris dataset. The average linkage and ward.D algorithms for two
clusters seem promising. . .
d <- scale(iris[,-5])
res <- NbClust2(dist(d))

dev.new(width = 16/2.54, height = 8/2.54)
plot(res)

Silhouette Dunn

2 4 6 8 10 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Number of Clusters

Va
lu

e
of

 th
e

in
de

x Method
ward.D

ward.D2

complete

average

mcquitty

Figure 38:

62

you can choose to plot only one of the indices
plot(res, index = "Dunn")
plot(res, index = "silhouette") # index name is case insensitive

More complex example.
We use here 3 distance matrices for the hierarchical clustering methods. We also add kmeans with dokmeans
= TRUE on the scaled and unscaled dataset. To compute kmeans you need to provide the transformed or not
transformed datasets (the distance matrix is ignored for k-means, they are only used by hlust).

Note that the indices are comparable between different methods within a given distance matrix (hclust) or
a given dataset (kmeans). You cannot compare for example the silhouettes values between the scaled and
unscaled dataset because the distances are not comparable (due to the different scales).
res <- NbClust2(diss = list(scaled = dist(scale(iris[,-5])),

unscaled = dist(iris[,-5]),
manhattan = dist(scale(iris[,-5]), method = "manhattan")),

kmax = 10, dokmeans = TRUE,
data = list(scaled = scale(iris[,-5]), unscaled = iris[,-5]))

dev.new(width = 18/2.54, height = 12/2.54)
plot(res)

scaled unscaled manhattan

Silhouette
D

unn

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

Number of Clusters

Va
lu

e
of

 th
e

in
de

x

Method
ward.D

ward.D2

complete

average

mcquitty

kmeans

Figure 39:

63

A final example : we use here the pollen dataset for which we produced a heatmap before. We compute the
indices on 4 distance matrices : Hellinger, Euclidean, Bray-Curtis and Jaccard (after binary transformation).
We also compute the kmeans solution for the Hellinger transformed and Euclidean datasets.

Remember that you cannot compare the indices between the distance matrices. The silhouette width of the
Euclidean distance based clustering are higher than the ones based on the hellinger transformed dataset but
it does not mean that the euclidean approach is better. . .

For the hellinger distance, the k-means and ward.D2 solutions for 5 clusters look promising. For the
Bray-Curtis distance, 5 to 7 clusters with the 2 Wards algorithms seem promising.

Note that the average linkage tends to give higher values for the highest number of clusters. This is probably
due to the creation of very small clusters with few observations that have the tendency to increase the
silhouette width (yoiu might check this on a dendrogram).

All average silhouette withd are > 0. On average the points are closer to the points of their own cluster than
to the points of the other clusters. . .

Note that the Dunn results are completely different and quite difficult to interpret here. . . The fact that the
Dunn index is always < 1 means that the minimum distance between clusters is on average smaller than
the maximum distance distance between clusters. We have large clusters and their borders are close to each
other. . .

The next step after a graph like that would probably be to examine the dendrograms and heatmaps of the
most promising solutions and check which one gives you the most usefull and interpretable solution . . .
reread the dataset
d <- read.csv2("data/pollen/full_dataset.csv")
d <- data.frame(d[, c(2:5)], d[, 14:47])
d <- unique(d)
d <- na.omit(d)
d <- d[,c(1:4, which(colSums(d[,-c(1:4)]) >50)+4)]
select the columns to use
Y <- d[, -c(1:4)]

hell_trans <- decostand(Y, "hellinger") # hellinger transformation
hell_dist <- dist(hell_trans) # hellinger distance between the rows (samples)

res <- NbClust2(data = list(euclid = Y, hellinger = hell_trans), # used only to compute k-means
diss = list(hellinger = hell_dist, euclid = dist(Y),

braycurtis = vegdist(Y, method = "bray"),
jaccard = vegdist(decostand(Y, "pa"), "jaccard")),

kmax = 14,
method = c("ward.D", "ward.D2", "complete", "average", "kmeans"))

dev.new(width = 18/2.54, height = 12/2.54)
plot(res)

64

hellinger euclid braycurtis jaccard

Silhouette
D

unn

5 10 5 10 5 10 5 10

0.1

0.2

0.3

0.4

0.2

0.3

0.4

0.5

Number of Clusters

Va
lu

e
of

 th
e

in
de

x Method
ward.D

ward.D2

complete

average

kmeans

Figure 40:

65

1.6.5 Compare different algorithms and different number of clusters with clValid

The ClValid package offers very intersting cluster validation approaches mainly for genomic data. It can
compares many diferent clustering algorithms (but only one grouping method at a time for hclust). However
the only distance possible are Euclidean, correlation and Manhattan. (so impossible to use for Jaccard,
Bray-Curtis,. . .)

It provides 3 types of validation indices :

1. internal : including the silhouette width, dunn index and a connectivity index The connectivity index
is comprised between 0 and infinity and should be minimized. It checks if the nearest neighbours of a
point are in the same clusters as this point. If the second nearest neighbour of a point is not in the
same cluster it will increase the index by a value of 1/2, if the 5th nearest neighbour is not in the same
cluster, it will increase the index by 1/5, etc.

2. stability measures : a series of measures performed after removing one of the variables. Note that
this might be interesting for dataset with highly redundant variables (like omics datasets) but it will
probably be meaningless for species community data : if you remove the domminant species of a
community of course you will obtain a very different clustering solution. Removing a variable from the
dataset might be a small perturbation for omics datasets (because of the redundancy) but it will often
not be a small perturbation for sites x species datasets.

3. biological measures : mainly based on gene function databases and so valid only for genomic data when
this information exists

Example on the hellinger transformed pollen data whith ward.D hclust, k-means and pam. You need to
provide the raw or transformed data and a distance matrix will be computed internally (Euclidean by default).

Note that based on the results of the previous section, the ward.D2 algorithm seem to provide much better
results that the ward.D algorithm which is the one used here for hclust (clMethods = "hierarchical")
and clValid won’t allow you to use the ward.D2 grouping method with hclust.

Hovever if you want to visualize an equivalent to the ward.D2 results you can add clMethods = "agnes". The
default ward grouping method of agnes (ie the function from package cluster that performs hierarchical
clustering just like hclust) is equivalent to the ward.D2 method of hclust. If you use other grouping
methods (like “average”) clMethods = c(“hierarchical”, “agnes”) will give you the same results (avoid that
to avoid overcrowded graphs. . .)
library(clValid)
intern <- clValid(hell_trans, 2:15,

clMethods = c("hierarchical","kmeans", "pam"),
method = "ward",
validation = "internal")

dev.new(width = 22/2.54, height = 7/2.54)
summary(intern)
par(mfrow = c(1,3), mar = c(3.5,3.5,1,1), mgp = c(2, 0.6, 0), cex = 0.8, las = 1)
plot(intern)

66

1

1
1

1
1

1
1 1 1

1
1 1 1 1

30

40

50

60

70

80

90
Internal validation

Number of Clusters

C
on

ne
ct

iv
ity

2

2
2

2
2

2
2 2 2

2
2

2 2 2

3
3 3

3
3 3

3 3
3

3 3 3 3 3

2 4 6 8 10 12 14

1
2
3

hierarchical
kmeans
pam

1

1

1 1 1 1
1 1 1

1
1 1

1 1

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Internal validation

Number of Clusters

D
un

n

2

2

2

2 2 2
2

2

2

2
2 2

2 2

3
3 3

3 3 3

3
3 3 3 3 3 3 3

2 4 6 8 10 12 14

1
2
3

hierarchical
kmeans
pam

1
1 1

1
1 1 1

1
1

1

1 1
1

1
0.16

0.18

0.20

0.22

0.24

Internal validation

Number of Clusters

Si
lh

ou
et

te 2
2

2

2
2

2

2

2 2

2

2
2 2

2

3

3

3

3

3 3

3 3 3
3 3 3 3 3

2 4 6 8 10 12 14

1
2
3

hierarchical
kmeans
pam

Figure 41:

Here is an example with more different clustering methods.
diana is a divisive hierarchical method, fanny is c-means fuzzy clustering (but the algorithm did not work
here expcepted for 2 clusters), model is model based clustering (based on gaussian models here) and agnes
is equivalent to hclust with ward.d2 method here while hierarchical is hclust with ward.D grouping
method here. pam is the k-medoïds algorithm and kmeans the k-means algorithm.

If you look at the silhouette width, almost all methods seem to “agree” on a 5 clusters solution and all seem
to do a good job excepted hclust with ward.D method (and model based clustering). Rememeber however
that the 5 clusters solution of a a non hierarchical algorithm like k-means might be quite different than the 5
clusters solution of a hieracrhical algorithm like hclust.

Even if the hclust with ward.D2 results (“agnes”) are slightly lower, the easiness of the method and the
possibility to draw dendrograms and heatmaps to help the interpretation might be a big advantage in favor
of this method.

However if you want to have well separated clusters, the Dunn index and Connectivity index tells you
another story : you might the prefer a solution with 2 clusters and agnes i.e. ward.D2 hierarchical clustering
(remember that the Connectivity index must be minimized while the Dunn index must be maximized like the
Silhouette width index).

Again the ward.D2 hierarhical clustering approach seem to be an interesting compromise here. You can
draw a dendrogram and a heatmap like figure 28. If you want well separated clusters (with a higher distance
between the border of the clusters) you can stop the interpretation at the 2 major groups. If the separatedness
of the clusters is less important you might interpret the 5 groups (taht have indeed here clear biological
interpretation. . .).

NB : see ?clValid-class for the arguments of the plot method and ?legend for more arguments of the
legend
intern <- clValid(hell_trans, 2:15,

clMethods = c("hierarchical", "kmeans", "diana", "fanny",
"model", "pam", "agnes"),

method = "ward", validation = "internal")
dev.new(width = 11/2.54, height = 20/2.54)
par(mfrow = c(3,1))
par(mar = c(3,3,3,1), mgp = c(1.9, 0.5, 0), cex = 0.8, las = 1)
plot(intern, legendLoc="top", measures = c("Connectivity"), main = "",

bty = "n", ncol = 4, xpd = NA, inset = -0.3) # legend options

67

par(mar = c(3,3,0.5,1), mgp = c(1.9, 0.5, 0), cex = 0.8, las = 1)
plot(intern, legend = FALSE, measures = c("Dunn", "Silhouette"), main = "", bty = "n")

1
1 1

1
1 1

1 1 1
1

1 1 1 1

20

40

60

80

Number of Clusters

C
on

ne
ct

iv
ity

2
2 2

2
2 2

2 2 2
2

2
2 2 2

3

3
3

3
3 3 3 3 3 3 3 3 3 3

4

5 5 5

5

5 5 5 5

5 5
5 5

5 5

6 6 6
6

6 6
6 6

6
6 6 6 6 6

7
7

7
7

7
7 7 7

7 7
7 7 7 7

2 3 4 5 6 7 8 9 10 12 14

1
2

3
4

5
6

7hierarchical
kmeans

diana
fanny

model
pam

agnes

1

1

1 1 1 1 1 1 1
1

1 1

1 1

0.20

0.25

0.30

0.35

0.40

Number of Clusters

D
un

n 2
2

2

2 2 2
2

2
2

2
2 2

2 2

3

3

3

3 3 3 3 3 3 3 3 3
3 3

4

5 5 5 5
5

5 5

5

5
5 5 5

5
5

6
6 6

6 6 6

6 6 6 6 6 6 6 6

7

7 7
7 7 7

7 7 7 7 7
7 7 7

2 3 4 5 6 7 8 9 10 12 14

1 1 1 1 1 1 1 1 1
1

1 1 1
1

0.00

0.05

0.10

0.15

0.20

0.25

Number of Clusters

Si
lh

ou
et

te

2 2
2

2 2 2
2

2 2
2

2 2 2
2

3
3 3

3 3 3 3 3 3 3 3 3 3 34

5
5 5

5

5
5 5 5

5 5 5 5 5 56

6
6

6
6 6

6 6 6 6 6 6 6 6

7
7

7
7 7 7 7 7

7 7 7 7 7 7

2 3 4 5 6 7 8 9 10 12 14

Figure 42:

68

	Clustering
	Clustering aims and general process
	Different clustering algorithms
	Hierarchical (aglomerative) clustering
	Introduction
	Details about the algorithm and different grouping methods
	Choice of the grouping method
	Flexible-Beta clustering
	Interpretation of the dendrogram and common pitfalls
	Basic dendrograms manipulation and graphs

	K-means and K-medoids partitioning
	Clusters interpretation
	Clusters visualisation
	Visualize the clusters with heatmaps
	Visualize the clusters on a SPLOM
	Visualize the clusters on an ordination plot

	Clusters description
	Describe the clusters with simple graphs
	Describe the clusters with pseudo-supervised approaches (eg : classification tree)

	Clustering validation
	Silhouette width
	Choose the best number of clusters with the Gap statistic
	Choose the best number of clusters with NbClust
	Compare different algorithms and different number of clusters with the silhouette width and Dunn index
	Compare different algorithms and different number of clusters with clValid

